Drainage

DR

Drainage

NO.	DATE	
DR-101	$04-18-17$	Pipe Culvert (Bedding and Backfill)
DR-102	$04-21-15$	Pipe Culvert (Cover and Camber)
DR-103	$04-21-15$	Pipe Culvert (Installation Details)
DR-104	$04-19-16$	Depth of Cover Tables for Concrete and Corrugated Pipe
DR-111	$04-17-18$	Box Culvert (Backfill)
DR-121	$04-18-23$	Connected Pipe Joints
DR-122	$10-18-16$	Construction of Type "C" Concrete Adaptors for Pipe Culvert Connections
DR-141	$04-18-17$	Pipe Bends and Half Pipe
DR-142	$10-19-21$	Culvert Pipe Tee Sections
DR-201	$10-17-23$	Concrete Aprons
DR-202	$10-17-23$	Low Clearance Concrete Pipe Aprons
DR-203	$04-21-20$	Metal Pipe Aprons and Beveled Ends
DR-204	$04-21-20$	Metal Arch Aprons (for Corrugated Metal Pipe)
DR-205	$10-17-23$	Concrete Apron with End Wall
DR-206	$10-17-23$	Low Clearance Concrete Pipe Apron With End Wall
DR-211	$04-21-20$	Metal Safety Slope Apron 6:1 Slope
DR-212	$04-21-20$	Beveled Pipe and Guard
DR-213	$10-18-22$	Pipe Apron Guard
DR-301	$04-19-22$	Subdrains for Fill or Foundation Drainage (Standard)
DR-302	$04-18-23$	Subdrains Standard (Farm Tile Replacement)
DR-303	$10-17-17$	Subdrains (Longitudinal)
DR-305	$04-19-22$	Subdrain Outlets (Standard Subdrain, Pressure Release and Special)
DR-306	$10-17-23$	Precast Concrete Headwall for Subdrain Outlets
DR-401	$04-16-24$	Scour Protection for Bridge End Drain
DR-402	$04-16-24$	Rock Flume for Bridge End Drain
DR-501	$04-17-18$	Corrugated Metal Type "A" Diaphragm
DR-502	$10-18-16$	Slotted Drain for Median Crossovers
DR-503	$04-21-20$	Safety Grates for Box Culverts

Drainage

NO.	DATE	
DR-504	$04-21-20$	Diagonal Placed Drain for Median Crossovers
DR-601	$04-18-17$	Reinforced Concrete Pipe Culvert
DR-602	$04-18-17$	Reinforced Concrete Pipe Culvert with Tees
DR-611	$04-18-17$	Reinforced Concrete Pipe Culvert Letdown Structure
DR-612	$04-18-17$	Apron Tee Inlet
DR-613	$04-17-18$	Concrete Pipewith "D" Section
DR-621	$04-18-17$	Pipe Extension
DR-622	$10-17-17$	Pipe Extension Horizontal Bend One or Both Ends
DR-625	$04-18-17$	Pipe Extension Letdown Structure with Metal Apron
DR-626	$10-15-19$	Pipe Extension - Adding Lanes
DR-627	$10-15-19$	Pipe Extension Horizontal Bend - Adding Lanes
DR-628	$10-15-19$	Pipe Extension Both Ends Horizontal Bend (Optional) - Adding Lanes
DR-629	$04-18-17$	Pipe Extension Letdown Structure Horizontal Bend (Optional) - Adding Lanes
DR-631	$04-18-17$	Corrugated Pipe Culvert Letdown Structure with Single Elbow
DR-632	$04-18-17$	Corrugated Pipe Culvert Letdown Structure with Double Elbow
DR-641	$04-21-20$	Concrete/Corrugated Pipe Culvert Letdown Structure with Metal Apron
DR-642	$04-18-17$	Apron Pipe Tee Inlet
DR-651	$04-18-17$	Unclassified Pipe Culvert
DR-652	$04-18-17$	Unclassified Letdown Structure Single Elbow
DR-653	$04-18-17$	Unclassified Roadway Letdown Pipe with Metal Apron

DESIGNER INFORMATION

REVISIONS: New. Replaces RF-30C.

PIPE CULVERT (INSTALLATION DETAILS)

When unclassified pipe is specified, furnish and install a class of pipe meeting the requirements on the chart. corrugated pipe and instalation to furnish as iong as the
selection conforms to the limits indicated for the type specified

When furnishing Steel Arch Pipe, furnish pipe with corrugations as specified in plans.

Minimum allowable cover for concrete and metal pipe is 2 feet for roadway culverts and 1 foot for entrance culverts.
Maximum cover for all sizes and installations of concrete arch pipe is 12 feet.
For all sizes and installations of polyethylene pipe: minimum cover $=2$ feet
maximum cover $=24$ feet for 12 to 24 inch pipes
Where a pipe size not listed in the tablis requred the indicated for the next smaller size will apply.
Special installations may be designed to exceed indicated cover by specific modification of one more of the following conditions:

1. Bedding Class
2. Pipe Strength (including special design pipe)
3. Compaction requirements for backill or cover material 5. Controlled trench width

Where site conditions favor such modifications, significant economy may result from special design installations and these should be considered. Special designs will speceify particular modification of construction requirements or design criteria as applicable. Necessary modifications of normal requirements
will not ordinarily be paid for seperately but will be included in will not ordinarily be paid for
the price bid for culvert pipe.

DESIGN CRITERIA FOR CONCRETE PIPE
The height of cover tables have been prepared from data in Concrete Pipe Association using the values listed below.

FOR EMBANKMENT CONDITIONS
Fill Material Density $=w=120$ lbs
Settlement Ratio $_{*}=$ rsd $=+0.5$
Projection Ratio $\quad=\mathrm{p}=0.9$ (Class "C" bedding)
$\begin{array}{ll}\text { Factor of Safety } & =p=0.7 \text { (Class "B" bedding) } \\ & =\text { F.S. }=1.33 \text { on Ultimate Strength }\end{array}$

* Using a ratio of lateral to vertical earth pressure (k) of 0.37 (saturated yellow clay) and a coefficient of internal friction (u) of 0.34 .
The values shown for concrete pipe were calculated for concrete pipe placed under embankment conditions. These concrete pipe placed under embankment conditions. These
values do not apply to to design and installation of sanitary values do not apply to to design and instalation of sanitary embankment conditions.

CONCRETE CULVERT PIPE CLASS "C" BEDDING				
DIAMETER OF PIPE 'D Inches	(H) MAXIMUM ALLOWABLE COVER IN FEET (Class II)	2000 D (Class III)	3000 D (Class IV)	3750 D (Class V)
18	9	12	18	22
24	10	13	19	23
36	11	14	20	24
48	11	15	21	25
60	12	15	21	26
72	12	16	22	26
84	13	16	22	27
96	13	16	23	27
108	13	17	23	28

REVIIIONS: Added general note regarding maximum cover on concrete arch pipes.

STEEL ROUND PIPE $2 \frac{2}{3} \times \frac{1}{2}$ " CORRUGATIONS											
diameter	MINIMUM	(H) MAXIMUM ALLOWABLE COVER IN FEET									
	ABOVE	$\begin{aligned} & 16 \text { GAGE } \\ & \left(0.064^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 14 \text { GAGE } \\ & \left(0.079^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 12 \text { GAGE } \\ & \left(0.109^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & \text { 10 GAGE } \\ & \left(0.138^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & \hline \text { 8 GAGE } \\ & \left(0.168^{\prime \prime}\right) \end{aligned}$	
		Round	Elongated								
12	12	70	-	76	-	-	-	-	-	-	-
15	12	56	-	61	-	-	-	-	-	-	-
18	12	40	-	48	-	64	-	-	-	-	-
24	12	23	-	26	-	33	-	-	-	-	-
30	12	-	-	18	30	22	43	25	51	-	-
36	12	-	-	15	25	17	33	19	38	-	-
42	12	-	-	-	-	14	28	16	31	17	34
48	12	-	-	-	-	13	25	14	27	15	29
54	18	-	-	-	-	12	24	13	25	13	26
60	18	-	-	-	-	-	-	12	23	12	25
66	18	-	-	-	-	-	-	11	22	12	23
72	18	-	-	-	-	-	-	11	17	11	21
78	24	-	-	-	-	-	-	-	-	11	17
84	24	-	-	-	-	-	-	-	-	11	13

STEEL ROUND PIPE 3"X1" and 5" X 1 " CORRUGATIONS											
$\underset{\substack{\text { diameter } \\ \text { OF }}}{ }$	MINIMUM	(H) MAXIMUM ALLOWABLE COVER IN FEET									
PIPE 'D'	ABOVE PIPE	$\begin{aligned} & 16 \text { GAGE } \\ & \left(0.064^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 14 \text { GAGE } \\ & \left(0.079^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 12 \text { GAGE } \\ & \left.(0.109)^{\prime}\right) \end{aligned}$		$\begin{aligned} & 10 \text { GAGE } \\ & \left(0.138^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & \hline 8 \text { GAGE } \\ & \left(0.168^{\prime \prime}\right) \end{aligned}$	
		Round	Elongated								
36	12	27	40	31	50	40	74	-	-	-	-
42	12	21	34	23	42	29	58	-	-	-	-
48	12	17	30	19	37	23	46	-	-	-	
54	12	15	27	16	32	19	38	-	-	-	-
60	12	13	24	15	29	16	33	-	-	-	
66	12	13	22	13	27	15	30	-	-	-	-
72	12	12	20	12	25	14	27	-	-	-	-
78	12	12	18	12	23	13	26	-	-	-	-
84	12	-	-	12	21	12	24	13	26	-	-
90	12	-	-	-	-	12	24	12	35	13	26
96	12	-	-	-	-	11	23	12	24	12	25
102	24	-	-	-	-	-	-	12	23	12	24
108	24	-	-	-	-	-	-	-	-	12	23
114	24	-	-	-	-	-	-	-	-	11	23
120	24	-	-	-	-	-	-	-	-	11	20

STRUCTURAL STEEL ROUND PIPE 6" X 2" CORRUGATIONS															
DIAMETER	MINIMUM COVER	(H) MAXIMUM ALLOWABLE COVER IN FEET													
$\begin{aligned} & \text { PIPE } \\ & \text { 'D' } \end{aligned}$	Above PIPE	$\begin{aligned} & 12 \text { GAGE } \\ & \left(0.109^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 10 \text { GAGE } \\ & \left(0.138^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & \hline 8 \text { GAGE } \\ & (0.168 ") \end{aligned}$		$\begin{aligned} & \hline 7 \text { GAGE } \\ & \left.(0.187)^{\prime}\right) \end{aligned}$		$\begin{aligned} & \hline 5 \text { GAGE } \\ & \left(0.218^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & \hline \text { 3 GAGE } \\ & (0.250 \text { " }) \end{aligned}$		$\begin{aligned} & \hline 1 \text { GAGE } \\ & (0.281 ") \\ & \hline \end{aligned}$	
Inches	Inches	Round	Elongateo	Round	Elongated										
60	12	35	35	43	52	51	67	-	-	-	-	-	-	-	-
66	12	29	32	35	45	41	61	-	-	-	-	-	-	-	-
72	12	25	29	29	43	34	56	-	-	-	-	-	-	-	-
78	12	22	27	25	40	29	52	31	60	-	-	-	-	-	-
84	12	19	25	22	37	25	48	27	53	-	-	-	-	-	-
90	12	18	23	20	34	22	44	23	47	-	-	-	-	-	-
96	12	16	22	18	32	20	40	21	42	-	-	-	-	-	-
102	24	15	21	17	30	18	36	19	38	-	-	-	-	-	-
108	24	14	19	16	29	17	34	18	36	-	-	-	-	-	-
114	24	14	18	15	27	16	32	17	33	18	36	-	-	-	-
120	24	13	18	14	26	15	30	16	31	17	33	-	-	-	-
126	24	13	-	13	25	14	29	15	30	16	31	-	-	-	-
132	24	12	-	13	24	14	27	14	28	15	30	-	-	-	-
138	24	12	-	13	23	13	26	14	27	14	29	-	-	-	-
144	24	12	-	12	22	13	26	13	26	14	27	-	-	-	-
150	24	12	-	12	21	12	25	13	26	13	27	14	28	-	-
156	24	11	-	12	20	12	24	12	25	13	26	13	27	-	-
162	24	11	-	12	19	12	24	12	24	13	25	13	26	13	27
168	24	11	-	11	19	12	23	12	24	12	25	13	25	13	26
174	24	11	-	11	18	12	23	12	23	12	24	12	25	13	25
180	24	11	-	11	17	11	23	11	23	12	24	12	24	12	25

STEEL ARCH PIPE $2 \frac{2}{3}^{\prime \prime} \mathrm{X} \quad \frac{1}{2}$ " CORRUGATIONS								
$\begin{aligned} & \text { SPAN } \\ & \text { Inches } \end{aligned}$	RISE Inches	$\underset{\mathrm{R}_{\mathrm{c}}^{(1)}}{\text { Inches }}$	MINIMUM COVER ABOVE PIPE Inches	(H) MAXIMUM ALLOWABLE COVER IN FEET				
				$\begin{array}{\|c\|} \hline 16 \mathrm{GA} . \\ \left(0.064^{\prime}\right) \end{array}$	$\begin{array}{\|c\|} \hline 14 \mathrm{GA} . \\ \left(0.0799^{\prime}\right) \end{array}$	$\begin{array}{\|c\|} \hline 12 \mathrm{GA} . \\ \left(0.109^{\prime \prime}\right) \end{array}$	$\begin{gathered} 10 \mathrm{GA} . \\ \left(0.138^{\prime \prime}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \mathrm{GA} . \\ \left(0.168^{\prime \prime}\right) \end{array}$
17	13	3.5	18	6	6	-	-	-
21	15	4.125	18	6	6	-	-	-
24	18	4.875	18	5	5	-	-	-
28	20	5.5	18	5	5	-	-	-
35	24	6.875	18	5	5	-	-	-
42	29	8.25	18	4	4	-	-	-
49	33	9.625	18	-	-	4	4	4
57	38	11.0	18	-	-	4	4	4
64	43	12.375	18	-	-	4	4	4
71	47	13.75	18	-	-	-	4	4
77	52	15.125	18	-	-	-	-	4
83	57	16.5	18	-	-	-	-	4

STRUCTURAL STEEL ARCH PIPE 6" X 2" CORRUGATIONS							
SPAN Inches	RISE Inches	$\underset{\mathrm{R}_{\mathrm{C}}^{1}}{(1)}$	MINIMUM COVER ABOVE PIPE Inches	(H) MAXIMUM ALLOWABLE COVER IN FEET			
				$\begin{aligned} & 12 \mathrm{GA} . \\ & \left(0.109{ }^{\prime}\right) \end{aligned}$	$\begin{aligned} & 10 \mathrm{GA} . \\ & \left(0.138{ }^{\prime \prime}\right) \end{aligned}$	8 GA $\left(0.1688^{\prime \prime}\right.$	$\begin{array}{\|c\|} \hline 7 \mathrm{GA} . \\ \left(0.187^{\prime \prime}\right. \\ \hline \end{array}$
73	55	18	18	8	-	-	-
84	61	18	18	7	-	-	-
95	67	18	18	6	-	-	-
106	73	18	24	6	-	-	-
117	79	18	24	5	-	-	-
131	85	18	24	5	-	-	-
142	91	18	24	4	-	-	-
154	100	18	24	4	-	-	-
159	112	31	24	6	-	-	-
170	118	31	24	6	-	-	-
184	124	31	24	-	6	-	-
195	130	31	36	-	5	-	-
206	136	31	36	-	5	-	-
217	142	31	36	-	-	5	-
231	148	31	36	-	-	4	-
239	154	31	36	-	-	4	-
247	158	31	36	-	-	-	4

STEEL ARCH PIPE $3^{\prime \prime} \mathrm{X} 1^{\prime \prime}$ and $5^{\prime \prime} \mathrm{X} 1^{\prime \prime}$ CORRUGATIONS							
$\begin{aligned} & \text { SPAN } \\ & \text { Inches } \end{aligned}$	RISE Inches	$\underset{R_{c}^{(1)}}{\text { Inches }}$	MINIMUM COVER ABOVE PIPE Inches	(H) MAX. ALLOWABLE COVER IN FT.			
				$\begin{array}{\|c\|} \hline 16 \mathrm{GA} . \\ \left(0.064^{\prime}\right) \end{array}$	$\begin{array}{\|c\|} \hline 14 \mathrm{GA} . \\ \left(0.0799^{\prime}\right) \end{array}$	$\begin{array}{\|c\|} \hline 12 \mathrm{GA} . \\ \left.(0.109)^{\prime}\right) \end{array}$	$\begin{array}{\|c\|} \hline 10 \mathrm{GA} . \\ \left(0.1388^{\prime}\right) \end{array}$
60	46	18.75	18	6	6	-	
66	51	20.75	18	6	6	-	-
73	55	22.875	18	8	8	-	-
81	59	20.875	18	-	7	7	-
87	63	22.625	18	-	7	7	-
95	67	24.375	18	-	6	6	-
103	71	26.125	24	-	-	6	-
112	75	27.75	24	-	-	5	-
117	79	29.5	24	-	-	5	-
128	83	31.25	24	-	-	-	5

(1) Corner Radius, Rc, changes from 18 inches to 31 inches for the 6 in. $\times 2$ in. corrugation.

DESIGNER INFORMATION

TYPICAL PLAN WITH ELBOW

Regular Pipe Sectio

REINFORCING BARS			
Size "D"	Bar	Number	
$12 "-21^{\prime \prime}$	$\frac{3}{6}$	Required	
$24 "-42^{\prime \prime}$	$\frac{3}{8}$	4	
$48^{\prime \prime}-60^{\prime \prime}$	$\frac{1}{1 "}$	8	
$66^{\prime \prime}-84 "$	$\frac{5}{8}{ }^{\prime \prime}$	8	

Length for pay purposes
TYPE "D" SECTION (SINGLE BEVEL)

Length for pay purposes
TYPE "D" SECTION (DOUBLE BEVEL)

Fabricate concrete pipe elbows and Type "D" pipe sections according to AASHTO M 170 for the size and class of pipe
specified. Meet the requirements of AASHTO M 32 for wire specified.
reinforcing.

Unless specified otherwise, bevel the Type "D" section on a
7.5 degree miter. The bevel may be provided on either the 7.5 degree miter. The bevel may be proviced on either the tongue end or groove end of the pipe. In certain cases, be bion
ends of the pipe section may require the beveled end.
Type "D" pipe sections will be included in the measurement for pipe culvert. No payment will be made specifically for the Type " D " section bevel. This is incidental to the price bid. The Contractor may substitute an approved elbow for "D" section bends of 15 degrees or less. Such elbows will not be measured for payment bu
price bid for culvert pipe

Refer to the plans for degree of elbow required for each
individual installation measured along centerline of pipe. Design length of pipe will be considered to be 6 ' 0 "
Fabricate elbows using a method approved by the Engineer and which results in a ainished product indicated hereon. The typical method for fabricating elbows is as follows: Steel rods
as specified, are attached to the normal wire reinforcing cage as specified, are eatached to the normal wire reinforcing cage
as indicated heren. After pipe is cast, make a cut 50% of the degree of elbow desired as indicated and cut the reinforcing
rods and mesh on centerline of the cut. Rotate the severed rods and mesh on centerline of the cut. Rotate the severed
section of pipe 180 degrees and reweld the reinforcing to th section of pipe opotagrees and reweld the reinforcing to opposite rods. Patch the remaining opening with ceme
mortar to complete a satisfactorily completed elbow as
shown.
For pipe sizes up through $48^{\prime \prime}$ in diameter, bends may be accomplished in increments of 7.5 degrees by using standard in appropriate combinations.

For pipe sizes from 54 " to 72 " in diameter, limit the "D" section to a maximum of 5 degree miter on any one end of

For pipe sizes through 48 " in diameter, bends from 15 to 45 degrees may be acco 48 isted using a single elbow. Bends otherwise by the Engineer.

Possible Tabulation:

STANDARD ROAD PLAN DR-141

Revisions:	Changed itit fom PIPE EENDS AND
	Shat Nich

PLAN OF STRAIGHT TEE

PLAN OF ANGLE TEE

CORRUGATED METAL PIPE

(ㄴ)
PLAN OF STRAIGHT TEE

PLAN OF ANGLE TEE

PLAN

SECTION
*The handling loop may be omitted when
DETAILS OF CONCRETE PIPE CAP

Tees may be required in any size from 12 inch diameter to 4 inch diameter (in 6 inch increments) on main pipe culverts
equal to or greater in diameter than that of the tee. Angle te may be required in any delta angle (of 5 degree increment) between 45 and 90 degrees. Consider a tee section delta angle 90 degrees (straight tees) unless noted otherwise in angle 90 degrees
the project plans.

Example: "18-36 inch Tee" means an 18 inch diamete 90 degree lateral tee attached to a 36 inch main pipe
culvert.
Example: " $24-48$ inch 75 degree Tee" means a 24 inch diameter lateral tee attached to a 48 inch main pipe diameter
culvert at an angle of 75 degrees.
Fabricate the tee in such a manner as to be as free from obstruction on the inside of the pipe as is reasonable. Use a method approved by the Engineer.
CORRUGATED METAL PIPE TEE: Repair damage to protective coating resulting from installation of culvert as directed by the Engineer.
CONCRETE PIPE TEE:
Length of main pipe section (L) is a minimum of 4 feet and a maximum of 8 feet. The length of main pipe section will be included in the measured length of structure.
CONCRETE PIPE CAP
The use of an approved pipe cap is required when so indicated on the detail project plans. Ensure the dimensions of the pipe cap are such that the pipe cap neatly fits the groove end of th
appropriate size of culvert pipe.

The cap may be precast or it may be cast directly into the pipe end with a tight mortar joint between the cap and the pipe. Place an approved bituminous joint material between the cap
and the pipe if the cap is positioned at the construction site. Installation of pipe cap is incidental to other pipe culvert work on the project.

REVIIIONS: Modified Concrete Pipe Tee note to maximum 8 feet.

DESIGNER INFORMATION

Dimension ' E ' shown is the minimum and is considered the design length. Adjust for any difference between the actual
length of concrete apron installed and the length indicated hereon within the length of concrete culvert pipe furnished. Install connected pipe joints as shown on DR-121

When specified in the contract documents, install pipe apron guards as shown on DR-213. Pipe apron guards are incidental to "Concrete Aprons"
Slight variations in both shape and dimensions from those shown may be accepted if approved by the engineer
(1) Tongue end used on inlet end section. Groove end used

DIAM.			TYPE 1 APRONS			*Maximum		
	SLOPE	A	B	MINIMUM		F	G	T
				C	E			
12"	2.4:1	$4{ }^{\prime \prime}$	2'-0"	4-7 ${ }^{\text {In }}$	6'-7\% ${ }^{\text {c/ }}$	2'0"	$2{ }^{\prime \prime}$	$2^{\prime \prime}$
15"	2.4:1	$6^{\prime \prime}$	2'-3"	3'-10"	6'-1"	2'-6"	24"	24"
18"	2.3:1	$9 "$	2'-3"	3'-10"	6'-1"	3'-0" *	$22_{2}^{11^{\prime \prime}}$	$22_{2}^{1 / 1}$
21"	2.4:1	$9 "$	3'-0 "	$3{ }^{3}-1 \frac{1}{1 / \prime \prime}^{\prime \prime}$	$6^{\prime}-1 \frac{1}{1 \prime \prime}$	3-5"	3"	$3^{\prime \prime}$
24"	2.5:1	$9_{2}^{1{ }^{1 \prime}}$	$3{ }^{\prime}-72^{\prime \prime \prime}$	2'6"	$6^{\prime}-11^{\prime \prime}$	4'-0"	3"	$3{ }^{\prime \prime}$
27"	2.5:1	$10{ }^{111}$	4-1"	2'0"	$6^{\prime}-1 \frac{1}{2}^{\prime \prime}$	4'4"	33_{2}^{111}	$33_{2}^{1 / 1}$
30"	2.5:1	12"	4'-6"	$1^{1}-7 \frac{7}{4 \prime \prime}$	$6^{\prime}-\frac{13}{4 \prime \prime}$	5'0"	33_{2}^{11}	$3{ }_{2}^{1 / 1}$
36"	2.5:1	15"	5'-3"	2'-9"	8-0"	6-0"	$4{ }^{\prime \prime}$	$4{ }^{4}$
42"	2.5:1	21"	5'-3"	2'9"	8'-0"	6'-6"	$4_{2}^{11^{\prime \prime}}$	44_{2}^{111}
48"	2.5:1	24"	6'0"	2-0"	8-0"	7'-0"	$5{ }^{\prime \prime}$	5 "
54"	1.8:1	27"	$5{ }^{5}-0^{\prime \prime}$	3 3-0"	8-0"	7'6"	5_{2}^{11}	$55_{2}^{1 / 1}$
60"	1.6:1	$29^{1 \prime \prime}$	5'-0"	3-0"	8-0"	8-0"	$55_{2}^{1 \prime \prime}$	$6 "$
66"	1.7:1	$30^{\prime \prime}$	6'0"	2'3"	8'3"	8-0"	5_{2}^{11}	$6{ }^{\prime \prime}$
72"	1.6:1	$30^{\prime \prime}$	6'-6"	1'-9"	8'3" ${ }^{\prime \prime}$	9-0"	$6 "$	$7{ }^{\prime \prime}$
78"	1.8:1	$36^{\prime \prime}$	7'-6"	1'9"	9'-3"	9'-6"	$6_{2}^{1{ }^{11}}$	$7{ }_{2}^{11}$
84"	1.3:1	$29_{2}^{1 \prime}$	6-9"	${ }^{2}-\mathrm{S}_{2}^{1 \prime \prime}$	$9^{-1} 33^{1 \prime \prime}$	10'0"	$6_{2}^{1{ }^{\prime \prime}}$	8"

DIAM.	SLOPE	A	TYPE 2 APRONS			*Maximum		
			B	MINIMUM		F	G	T
				c	E			
$12^{\prime \prime}$	2.4:1	$4 "$	2'-0"	4.-7\%	6'-7, ${ }^{\text {a }}$	2'-0"	$2^{\prime \prime}$	2 "
15"	2.4:1	$6 "$	2'-3"	3'-10"	6'-1"	2'-6"	$22^{\frac{11}{\prime \prime}}$	$2{ }^{\frac{1}{4}}$
18"	2.3:1	$9 "$	2'-3"	3'-10"	$6^{6}-1{ }^{\prime \prime}$	3'-0" *	22_{2}^{111}	$22_{2}^{1 / 1}$
21"	2.4.1	$9 "$	3'-0"	$3{ }^{-1} 1 \frac{1}{2}^{\prime \prime}$	$6^{\prime}-11^{1 \prime \prime}$	3'5"	$3^{\prime \prime}$	3"
24"	2.5:1	$9{ }_{2}^{111}$	3'-7 ${ }^{12^{11}}$	2'-6"	$6^{\prime}-1 \frac{1}{2 \prime \prime}^{\prime \prime}$	4'-0"	$3 "$	$3 "$
27"	2.5:1	$10{ }^{1 \prime \prime}$	4-1 ${ }^{\text {" }}$	2'-0"	$6^{\prime}-1 \frac{1}{2}^{\prime \prime}$	4'-4"	$3{ }_{2}^{111}$	$3{ }^{\frac{11}{11}}$
30"	2.5:1	$12^{\prime \prime}$	4'-6"	$1^{1}-7 \frac{3}{4}$	$6^{\prime}-1 \frac{13}{}{ }^{\text {a }}$	5'-0"	$3{ }^{111}$	$3{ }_{2}^{1 / 2}$
36"	2.5:1	$15 "$	5'-3"	2'-9"	$8{ }^{8}$-0"	6'-0"	$4{ }^{\prime \prime}$	$4{ }^{\prime \prime}$
42"	2.5:1	21"	5'-3"	2'-9"	$8{ }^{8}$-0"	6'-6"	44^{111}	$4{ }_{2}^{1 / 1}$
48"	2.5:1	24"	6'-0"	2'-0"	8^{8}-0"	7'-0"	$5^{\prime \prime}$	$5^{\prime \prime}$
$54 "$	1.9:1	$24{ }^{1 / 1}$	5'-5"	2'-7"	8^{8-01}	7'-6"	$5{ }_{2}^{1 \prime \prime}$	$5 \frac{11}{}$
60"	1.4.1	$24{ }^{11^{\prime \prime}}$	5'-0"	3'-0"	8-0"	8'-0"	5211	$6 "$
66"	1.7:1	30"	6'0"	2'-3"	8'3"	8'-0"	$5{ }_{2}^{11 \prime}$	$6 "$
72"	1.4:1	24"	6'-6"	1'-9"	8'3"	9'-0"	$6 "$	$7{ }^{\prime \prime}$
78"	1.8.1	$36 "$	7'6"	1'-9"	9'-3"	9-6"	66_{2}^{11}	$7{ }^{\frac{1}{2}}$
84"	1.5:1	$23{ }^{\frac{11}{1 \prime}}$	7-68211	1'-9"	$9{ }^{\prime}-3{ }_{2}^{\prime \prime \prime}$	10'-0'	6_{2}^{111}	8"

Contract Item:
Apron, Concrete

Tabulations:

$104-3$
$104-5 \mathrm{C}$

STANDARD ROAD PLAN DR-201
 SHEET 1 of 1

DESIGNER INFORMATION

PLAN

END

NOMINAL DIMENSIONS SPAN X RISE Inches	EQUIVALENT DIAMETER Inches	SPAN Inches	RISE Inches	SLOPE	APPROXIMATE DIMENSIONS					
					Inches * Maximum					
					(${ }^{\text {¢ }}$	(A)	(B)	(c)	(E)	©
22×14	18	22	$13 \frac{1}{2}$	3:1	$2 \frac{1}{2}$	7	27	45	72	36 *
29×18	24	$28 \frac{1}{2}$	18	3:1	3	81	39	33	72	48
37×23	30	$36 \frac{1}{4}$	$22 \frac{1}{2}$	3:1	$3 \frac{1}{2}$	$9 \frac{1}{2}$	50	46	96	60
44×27	36	$43 \frac{3}{8}$	$26 \frac{5}{8}$	3:1	4	111 $\frac{1}{8}$	60	36	96	72
52×32	42	$51 \frac{1}{8}$	$31 \frac{5}{16}$	3:1	$4 \frac{1}{2}$	$15 \frac{13}{16}$	60	36	96	78
59×36	48	$58 \frac{1}{2}$	36	3:1	5	21	60	36	96	84
65×40	54	65	40	3:1	$5 \frac{1}{2}$	$25 \frac{1}{2}$	60	36	96	90
73×45	60	73	45	3:1	6	31	60	36	96	96
88×54	72	88	54	$2: 1$	7	31	60	39	99	120
102×62	84	102	62	2:1	8	$21 \frac{1}{2}$	83	19	102	144

Comply with AASHTO M 206 for Apron Reinforcement
Dimension "E" shown is minimum and is considered the design length. Appropriately adjust for any difference between the actual length of concrete apron installed and the length indicated hereon for the length of concrete culvert pipe furnished.
Install connected pipe joints as shown on DR-121.
Slight variations in both shape and dimensions from those shown may be accepted if aproved by the engineer.
(1) Tongue end on inlet end section. Groove end on outlet end section. Inlet end section is shown

Possible Contract Item: Low Clearance Concrete Pipe Aprons
Possible Tabulations
$104-3$
$104-4$

STANDARD ROAD PLAN DR-202

REVIIIONS:	Added note about shape and dimensions.	

PLAN

ELEVATION

END

NOMINAL DIMENSIONS SPAN X RISE Inches	EQUIVALENT DIAMETER Inches	SPAN Inches	RISE Inches	APPROXIMATE DIMENSIONS Inches					
				T	L	w	X	Y	z
115×72	90	115	72	$8 \frac{1}{2}$	$102 \frac{1}{4}$	72	$30 \frac{1}{4}$	$37 \frac{7}{8}$	48
122×78	96	122	$77 \frac{1}{2}$	9	$112 \frac{1}{2}$	72	$40 \frac{1}{2}$	39	54
138×88	108	138	$87 \frac{1}{8}$	10	$129 \frac{1}{2}$	48	$81 \frac{1}{2}$	$42 \frac{3}{8}$	66
154×97	120	154	$966^{\frac{7}{8}}$	11	144	48	96	$46 \frac{7}{8}$	78
169×107	132 (2)	$168 \frac{3}{4}$	$106 \frac{1}{2}$	10	144	48	96	$54 \frac{5}{8}$	90

(1) Tongue end on inlet end section. Groove end on outlet end section. Inlet end section is shown.
(2) 132 inch size is a three piece end section

DETAIL 'A'

Q1OMMDOT		REVISION	
		2 10-17-23	
STANDARD ROAD PLAN		DR-202	
REVISIONS: Added note about shape and dimensions.			
Shuat Nider			
LOW CLEARANCE CONCRETE PIPE APRONS			

Comply with AASHTO M 207 for Apron Reinforcement.
Dimension "E" shown is minimum and is considered the design length. Appropriately adjust for any difference betwee indicated heo for the length of concreted and the len indicated h
furnished.
Install connected pipe joints as shown on DR-121
Slight variations in both shape and dimensions from those shown may be accepted if aproved by the engineer
(1) Tongue end on inlet end section. Groove end on outlet end section. Inlet end section shown

EquIVALENT DIAMETER Inches	$\begin{aligned} & \text { SPAN } \\ & \text { Inches } \end{aligned}$	RISE Inches	SLOPE	APPROXIMATE DIMENSIONS					
				Inches *Maximum					
				T	A	B	C	E	F
18	23	14	3:1	$2 \frac{3}{4}$	$7 \frac{1}{2}$	27	45	72	36 *
24	30	19	3:1	$3 \frac{1}{4}$	$8 \frac{1}{2}$	39	33	72	48
30	38	24	3:1	$3 \frac{3}{4}$	$9{ }_{9}$	54	18	72	60
36	45	29	2.5 to 1	$4{ }^{\frac{1}{2}}$	111	60	24	84	72
42	53	34	2.5 to 1	5	$15 \frac{3}{4}$	60	36	96	78
48	60	38	2.5 to 1	$5 \frac{1}{2}$	21	60	36	96	84
54	68	43	2.5 to 1	6	$25 \frac{1}{2}$	60	36	96	90
60	76	48	2.5 to 1	$6 \frac{1}{2}$	30	60	36	96	96
72	91	58	2.5 to 1	$7 \frac{1}{2}$	36	63	33	96	108
90	113	72	1.6 to 1	9	$36 \frac{1}{2}$	58	38	96	113

DESIGNER INFORMATION

DESIGNER INFORMATION

TYPICAL CROSS SECTION

SPAN/	EQUIV.DIA.	GAGE	DIMENSIONS (In Inches)					APPROXSLOPE
			$\begin{gathered} \text { A } \\ \left(\pm 1^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (Max.) } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \left(\pm 1^{\prime \prime}\right) \end{gathered}$	$\underset{\substack{\mathrm{L} \\\left(\pm 1 \frac{1}{2}^{\prime \prime}\right)}}{ }$	$\begin{gathered} \mathrm{w} \\ \left(\pm 2^{\prime \prime}\right) \end{gathered}$	
17 "x 13"	15"	16	$6 \frac{1}{2}$	$8{ }_{2}^{1-9}$	6	20	30	$2 \frac{1}{2}$
$21^{\prime \prime} \times 15{ }^{\prime \prime}$	18"	16	$7 \frac{1}{2}$	11	6	24	36	$2 \frac{1}{2}$
$24^{\prime \prime} \times 18^{\prime \prime}$	21"	16	8	12	6	28	42	$2 \frac{1}{2}$
$28^{\prime \prime} \times 20$ "	$24^{\prime \prime}$	16	8	16	6	32	48	$2 \frac{1}{2}$
$35^{\prime \prime} \times 24$ "	30"	14	10	16	7	39	60	$2 \frac{1}{2}$
42"× 29 "	$36 "$	14	12	18	$7{ }_{2}^{1}-8$	46	75	$2 \frac{1}{2}$
49 " $\times 3$ "	$42^{\prime \prime}$	12	$13 \frac{1}{2}$	21	9	53	84	$2{ }_{2}^{1}$
57 "x 38"	48"	12	$18 \frac{1}{2}$	26	12	62	90	$2 \frac{1}{2}$
64"x 43 "	$54 "$	12	18	30	12	69	102	$2 \frac{1}{4}-2$
$71^{\prime \prime} \times 47^{\prime \prime}$	601	12/10	$18 \frac{1}{2}$	36	12	77	114	$2 \frac{1}{4}-1 \frac{1}{2}$
77"x 52"	$66^{\prime \prime}$	12/10	18	36	12	77	126	2-12
83"x 57 "	72"	12/10	18	44	12	77	135 ± 3	2-12

Install aprons and hardware fabricated from galvanized stee complying with Section 4141 of the Standard Specifications Alternate design details may be submitted to the Engineer for
approval.

Comply with the following
All 3 piece bodies are to have 12 -gage sides and 10-gage center panels. Multiple panel bodies are to have lap seams which are to be tightly joined by
2. For the 77 " $\times 52$ " and 83 " $\times 57$ " sizes, the reiforced edge is to be supplemented by galvanized angles. The angles are to be attached by galvanized nuts
3. Angle rein

Angle reinforcement is to be placed under the
center panel seams on the $77 " \times 52^{\prime \prime}$ and $83 " \times 57{ }^{\prime \prime}$
sizes.
4. Galvanized Toe plate is to be available as an accessary when specified on the order and is to be the same gage as the end section.

Aprons may be attached to culvert pipe as follows
A. If culvert is of circumferential corrugation, use an
approved bolt or clamp to fasten apron directly to
approved bolt or clamp to fasten apron directly to
culvert
B. If culve
1.

1. Use an approved sizing ring securely fastened to inside diameter of apron to connect to the culvert pipe using a special dimple band 2. "Dimple" b
. "Dimple" bands are not a
Refer to Materials I.M. 441 for approved coupling devices
Repair, to the Engineer's satisfaction, breaks or damage to the
coating that occur during handling or installation.
Price bid for "Aprons, Metal, Arch" is full compension for fabrication and installation of metal arch aprons as indicated
hereon.

Possible Tabulations
104-3

REVIIIINS:	Added Designer Into button.
	Shuat Nich

DESIGNER INFORMATION

DIAM.	SLOPE	A	B	TYPE 1 APRONS			* Maximum	
				MINIMUM		F	G	T
				C	E			
12"	2.4:1	4"	2'-0"	4-7 ${ }^{\frac{717}{\prime \prime}}$	6'-717	2'0"	2"	2"
$15^{\prime \prime}$	2.4:1	$6{ }^{\prime \prime}$	2'-3"	3'-10"	6'-1"	2'6"	22_{4}^{11}	$2{ }_{4}^{1 / 1}$
18"	2.3:1	$9 "$	2'-3"	3'-10"	6'1"	3'-0" *	22^{111}	$22^{1 / 1}$
21"	2.4:1	$9{ }^{\prime \prime}$	3'-0"	3'-1年"	$6^{\prime}-1 \frac{1}{1 \prime \prime}$	3'-5"	$3^{\prime \prime}$	$3^{\prime \prime}$
24"	2.5:1	$9{ }_{9}^{111}$	3'-721"	2'6"	$6^{\prime}-1 \frac{1}{12^{\prime \prime}}$	4'-0"	$3{ }^{\prime \prime}$	3"
$27^{\prime \prime}$	2.5:1	$10{ }^{1 \prime \prime}$	4'-1"	2-0"	$6^{\prime}-1 \frac{1}{2 \prime \prime}^{\prime \prime}$	4'-4"	33^{111}	$33_{2}^{1 / 1}$
30"	2.5:1	12"	4'-6"	1'-74"	$6^{\prime}-1 \frac{3}{4}{ }^{\prime \prime}$	5'0"	32^{11}	$3{ }_{2}^{111}$
$36^{\prime \prime}$	2.5:1	15"	5'-3"	2-9"	8'-0"	6'-0"	$4{ }^{\prime \prime}$	4"
$42^{\prime \prime}$	2.5:1	21"	5'-3"	2-9"	8'0"	6'-6"	4_{2}^{111}	4210
48"	2.5:1	24"	6'-0"	2-0"	8'-0"	7-0"	$5{ }^{\prime \prime}$	$5{ }^{\prime \prime}$
54"	1.8:1	27"	5'-0"	3-0"	8'-0"	7'-6"	$5{ }_{2}^{111}$	$5{ }^{1 / 1}$
60"	1.6:1	$29{ }^{1 \prime \prime}$	5'-0"	3'0"	8'-0"	8'0'0'	$5{ }_{2}^{11}$	$6{ }^{\prime \prime}$
66"	1.7:1	$30 "$	6'-0"	2'-3"	8'3"	8'-0"	5_{2}^{111}	6"
72"	1.6:1	301	6'-6"	1'-9"	8'-3"	9'0"	$6{ }^{\prime \prime}$	$7{ }^{\prime \prime}$
$78^{\prime \prime}$	1.8:1	36"	7'-6"	1'-9"	9'-3"	9'6"	66_{2}^{111}	$7{ }_{2}^{1 / 1}$
84"	1.3:1	$29{ }_{2}^{1 "}$	6'-9"	2'-61"	9 9-3 ${ }^{1{ }^{1 \prime \prime}}$	10'-0"	66_{2}^{11}	8"

TYPE 2 APRONS * Maximum								
DIAM.	SLOPE	A	B	MINIMUM		F	G	T
				c	E			
12"	2.4:1	4"	2'-0"	4.-7.71		2'-0"	2"	$2{ }^{\prime \prime}$
$15^{\prime \prime}$	2.4:1	6 "	2'3"	3'-10"	6'-1"	2'-6"	24 ${ }_{4}^{1 \prime \prime}$	$22_{4}^{1 / 1}$
$18^{\prime \prime}$	2.3:1	$9 "$	2'-3"	$3{ }^{3}-10^{\prime \prime}$	6'-1"	3'0" *	$22_{2}^{1 / 1}$	$22_{2}^{1 / 1}$
21"	2.4:1	$9 "$	3'00'	3 3-1年	$6^{\prime}-1 \frac{1}{1 \prime \prime}$	3'5"	$3^{\prime \prime}$	3"
24"	2.5:1	$9{ }_{2}^{111}$	$3{ }^{\prime}-72^{\prime \prime \prime}$	2'-6"	$6^{\prime}-11^{\prime \prime}$	4-0"	$3 "$	$3{ }^{\prime \prime}$
27"	2.5:1	$10 \frac{10}{1 / 2}$	4-1"	2'-0"	$6^{\prime}-1 \frac{1}{2}^{\prime \prime}$	4-4"	$3{ }_{2}^{1 / 1}$	$3{ }_{2}^{1 / 1}$
30"	2.5:1	$12^{\prime \prime}$	4'-6"	$1^{\prime}-7 \frac{3}{}{ }^{3 \prime}$	$6^{\prime}-1{ }^{\frac{3}{4}}$	5'0"	$3{ }_{2}^{1 / 1 /}$	$3{ }_{2}^{1 / 1}$
36"	2.5:1	$15^{\prime \prime}$	5'-3"	2'-9"	8^{1-010}	$6^{\prime}-0^{\prime \prime}$	$4{ }^{\prime \prime}$	$4{ }^{\prime \prime}$
42"	2.5:1	21"	5'-3"	2'-9"	8-0"	6^{\prime}-6"	$4{ }_{2}^{11^{1 /}}$	$44_{2}^{1 / 1}$
$48^{\prime \prime}$	2.5:1	$24^{\prime \prime}$	6'-0"	2'-0"	8'-0"	7-0"	$5{ }^{\prime \prime}$	$5{ }^{\prime \prime}$
54"	1.9:1	24 ${ }^{\frac{11}{11}}$	5'-5"	2'-7"	$8{ }^{\text {- }}$ - ${ }^{\prime \prime}$	7-6"	$5_{2}^{1 / 1}$	$5_{2}^{1 / 1}$
60"	1.4:1	24 ${ }^{\frac{1}{1 / 1}}$	5'-0"	3'-0"	8'0'0'	8-0"	$5{ }_{2}^{1 / 1}$	$6^{\prime \prime}$
66"	1.7:1	30"	6'-0"	2'-3"	8-3"	$8^{\prime}-0^{\prime \prime}$	$5{ }_{2}^{1 \prime \prime}$	6"
72"	1.4:1	$24^{\prime \prime}$	6'-6"	1'-9"	8'-3"	9-0"	$6 "$	$7{ }^{\prime \prime}$
78"	1.8.1	36"	7'-6"	1'-9"	9'-3"	9'6"	$66_{2}^{1 / 1}$	$77_{2}^{1 / 1}$
84"	1.5:1	23121	$7^{\prime}-6{ }_{2}^{\prime \prime \prime}$	1'-9"	$9^{9}-3{ }_{2}^{1 \prime \prime}$	10'-0"	$6_{2}^{1 / 1}$	8"

For the End Wall, match the thickness "T" and reinforcing used for the pipe apron.

Dimension " E " shown is the minimum and is considered the design length. Adjust for any difference between the actual length of concrete apron installed and the length indicated

Install connected pipe joints as shown on DR-121.
When specified in the contract documents, install pipe apron guards as shown on DR-213. Adjust connection locations to avoid conflict with end

Slight variations in both shape and dimensions from thos shown may be accepted if approved by the engineer.
(1) Tongue end used on inlet end section. Groove end used on outlet end section.

Contract Item:
Apron, Concrete
Possible Tabulation: 104-3

REVIIIONS: Added note about shape and dimensions.
Shatellich

DESIGNER INFORMATION

PLAN

END

NOMINAL DIMENSIONS SPANXRISE Inches	EQUIVALENT DIAMETER Inches	$\begin{aligned} & \text { SPAN } \\ & \text { Inches } \end{aligned}$	RISE Inches	SLOPE	APPROXIMATE DIMENSIONS					
					Inches				*Maximum	
					T	A	B	c	E	F
22×14	18	22	$13 \frac{1}{2}$	3:1	$2 \frac{1}{2}$	7	27	45	72	36 *
29×18	24	$28 \frac{1}{2}$	18	3:1	3	$8 \frac{1}{2}$	39	33	72	48
37×23	30	$36 \frac{1}{4}$	$22 \frac{1}{2}$	3:1	$3 \frac{1}{2}$	$9 \frac{1}{2}$	50	46	96	60
44×27	36	$43 \frac{3}{8}$	$26 \frac{5}{8}$	3:1	4	111 $\frac{1}{8}$	60	36	96	72
52×32	42	$51 \frac{1}{8}$	$31 \frac{5}{16}$	3:1	$4 \frac{1}{2}$	$15 \frac{13}{16}$	60	36	96	78
59×36	48	$58 \frac{1}{2}$	36	3:1	5	21	60	36	96	84
65×40	54	65	40	3:1	$5 \frac{1}{2}$	$25 \frac{1}{2}$	60	36	96	90
73×45	60	73	45	3:1	6	31	60	36	96	96
88×54	72	88	54	2:1	7	31	60	39	99	120
102×62	84	102	62	2:1	8	$21 \frac{1}{2}$	83	19	102	144

Comply with AASHTO M 206 for Apron Reinforcement.
Dimension "E" shown is minimum and is considered the design length. Appropriately adjust for any difference between the actual length of concrete apron installed and the leng indicated hereon for the length of concrete culvert pipe furnished.
Install connected pipe joints as shown on DR-121
Slight variations in both shape and dimensions from those shown may be accepted if approved by the engineer.
(1) Tongue end on inlet end section. Groove end on outlet end section. Inlet end section shown.

Possible Contract Item: Low Clearance Concrete Pipe Aprons
Possible Tabulations
$104-3$
$104-4$

\section*{| STANDARD ROAD PLAN DR-206 |
| :--- | :--- |}

REVISIONS:	Added note about dimension and shape.	

phe joits as shown on DR-121
Slight variations in both shape and dimensions from those shown may be accepted if approved by the engineer.
(1) Tongue end on inlet end section. Groove end on outlet end section. Inlet end section shown.

DESIGNER INFORMATION

DESIGNER INFORMATION

DESIGNER INFORMATION

PLAN

PROFILE

ROUND		ARCH		ELLIPTICAL	
PIPE SIZE	H	PIPE SIZE	H	PIPE SIZE	H
$12^{\prime \prime}$	22^{11}	$22^{\prime \prime} \times 14{ }^{\prime \prime}$ to 29 " $\times 18^{\prime \prime}$	$4{ }^{\prime \prime}$	$23^{\prime \prime} \times 14$ " to 30 " $\times 19$ "	4"
$15{ }^{\prime \prime}$	3"	37 " $\times 23$ " to $44{ }^{\prime \prime} \times 27{ }^{\prime \prime}$	$5^{\prime \prime}$	$38^{\prime \prime} \times 24$ "to $45^{\prime \prime} \times 29$ "	$5{ }^{\prime \prime}$
18"-24"	$4{ }^{\prime \prime}$	$52^{\prime \prime} \times 32$ "to 65 " $\times 40$	$6 "$	$53^{\prime \prime} \times 34$ " to $688^{\prime \prime} \times 43^{\prime \prime}$	$6 "$
$27^{\prime \prime}$ - 36 "	$5{ }^{\prime \prime}$	73 " $\times 45$ " to 88 " $\times 54$ "	$7{ }^{\prime \prime}$	$76 " \times 48^{\prime \prime}$ to $91{ }^{\prime \prime} \times 58{ }^{\prime \prime}$	$7{ }^{\prime \prime}$
42" - 54"	$6^{\prime \prime}$				
60"-72"	$7{ }^{7}$				
78"- 90 "	8"				

FRONT (Round Shown)

bar sizes				
	PIPE SIZE	hole dia. REQ'D.	$\begin{aligned} & \text { BOLT } \\ & \text { DIA. } \end{aligned}$	$\begin{aligned} & \text { BAR } \\ & \text { SIIE } \end{aligned}$
	12"-24"	$\frac{3}{4}$	$\frac{5}{8 \prime}$	$\frac{3^{\prime \prime}}{4}$
	27 " - 48"	$\frac{7^{\prime \prime}}{8}$	$\frac{3}{4 \prime}$	1"
	54 - 90"	$1{ }^{111}$	1"	$1 \frac{11}{4 \prime}$
$$	up to 29" $\times 18{ }^{\prime \prime}$	$\frac{3^{\prime \prime}}{4}$	$\frac{5}{8 \prime}$	$\frac{3^{\prime \prime}}{4}$
	$37^{\prime \prime} \times 23$ " to 59" $\times 36^{\prime \prime}$	$\frac{7^{\prime \prime}}{8}$	$\frac{3^{\prime \prime}}{4}$	1"
	$65^{\prime \prime} \times 40$ to $888^{\prime \times} \times 44^{\prime \prime}$	$1{ }^{10}{ }^{11}$	1"	14" ${ }^{1 /}$
	up to 30 " $\times 19^{\prime \prime}$	$\frac{3}{4}$	$\frac{5}{8 \prime}$	$\frac{3^{\prime \prime}}{4}$
		$\frac{7}{8}$	$\frac{3^{\prime \prime}}{4}$	1"
		$1 \frac{11}{8 \prime}^{1 \prime}$	1"	$11^{\prime \prime}$
BOLT LENGTH = PIPE WALL THICKNESS + 2 ${ }_{2}^{111}$				

Provide guard dimensions to fit with Type of apron provided (DR-201, DR-202, DR-205, or DR-206). 'V' Bar is to completely rest on apron.
Use Grade 40, Grade 60 or merchant quality, smoothed or deformed steel bars in construction of the guard. Comply with fabrication requirements of Section 2404 of the Standard Specifications
Hot-dip galvanize the completed apron guard according to ASTM A123.

Use bolts, nuts, washers, and fasteners complying with Article 4153.06 of the Standard Specifications.
(1) All guards are to have at least one intermediate cross ater, use two intermediate cross bars equally spaced.

Possible Tabulation:
$104-3$

STANDARD ROAD PLAN DR-213

REVISIONs: Modifed note about rade of steel

TYPE 5 INSTALLATION SECTION A-A Subgrade Treatment Subdrain

TYPE 6 INSTALLATION
SECTION C-C
For Drain Placement Prior to

TYPE 7A INSTALLATION SECTION C-C

TYPE 7B INSTALLATION SECTION C-C

TYPE 8A INSTALLATION SECTION C-C

TYPE 8B INSTALLATION SECTION C-C

TYPE 9 INSTALLATION SECTION C-C Composite Pavement
with Existing Shoulder
(1) Perforated Subdrain (Corrugated Polyethylene Tubing)
(2) Porous Backfill for Subdrain (compacted).
(6) Place porous backfill in direct contact with a minimum of 2 inches of pavement and continuous to shoulder material as per note 11 or 12 .
(9) Install subdrain as cut proceeds.
(10) On existing Granular or Earth Shoulders, replace with 4 inch minimum depth granular shoulder material.
(11) On Paved Shoulders, refer to Section 2502 of the Standard Specifications for finishing shoulder.
(12) Cut "V" notch just prior to subbase (if proposed) or pavement placement to assure uncontaminated contact
(13) Place top of subdrain trench at the bottom of pavement Backfill trench so that a wedge of porous backfill has a minimum vertical contact of 2 inches with the pavemen

TYPE 11 INSTALLATION SECTION B-B Backslope

TYPE 12 INSTALLATION SECTION D-D

TYPE 13 INSTALLATION SECTION C-C
Thinner than Existing Pavement

TYPE 14 INSTALLATION
For New Widening Unit if
Thicker than Existing Pavement

SUBDRAINS (LONGITUDINAL)

DESIGNER INFORMATION

Possible Contract Item: Subdrain Outlet (DR-305)

Possible Tabulations:

SUBDRAIN OUTLETS (STANDARD SUBDRAIN, PRESSURE RELEASE AND SPECIAL)

DESIGNER INFORMATION

DESIGNER INFORMATION

DESIGNER INFORMATION

DESIGNER INFORMATION

LONGITUDINAL SECTION THROUGH CMP SLOTTED DRAIN ASSEMBLY

4' Deep from ML Profile Grade
PCC PAVEMENT SITUATION

Possible Contract Items:
Beveled Pipe and Guard
Culvert, Unclassified Roadway Pipe, 18" Dia Detour Pavement
Drain, Corrugated Metal Pipe Slotted, 36", w/6" Grate Special Backfil

Possible Tabulation:

EVVIIONS: Changed 'Unclassified Entrance Pipe' to 'Unclassified Rooaway Pipe
$\frac{\text { coincie with Tas } 112-8, \text {, Nedian Crossovers. }}{\text { Shat }}$

SLOTTED DRAIN FOR MEDIAN CROSSOVERS
(1) Beveled pipe and guard. See DR-212.
(2) During construction of crossover pavement, cover slotted drain with duct tape or wood block.
(3) Slotted grate 6 inches high $\times 1 \frac{1}{4}$ inches opening width. Use $\frac{3}{16}$ inch material for spacers and bearing bars (sides).

DESIGNER INFORMATION

DESIGNER INFORMATION

Possible Tabulation:

REVIIIINS: Modified note 1 to include references to additional apron types

(1) Refer to the following: DR-201 for circular concrete DR-202 for low clearance concrete. DR-203 for circular metal. DR-205 for circular concrete with end wall DR-206 for low clearance concrete with end wall.
(2) See DR-142.

REVIIONS: Modified note 1 to include references to additional apron types
$\frac{\text { Shat }}{\square}$ DR-203 for circular metal. DR-205 for circular concrete with end wall. DR-206 for low clearance concrete with end wall.
(2) Bend may be accomplished by use of metal elbow, Pipe Adaptor (DR-122), Type "D" Section, or Concrete Elbow (DR-141) as specified.

PLAN
(1) Refer to the following:

R-201 for circular concrete
DR-202 for low clearance concrete.
DR-203 for circular metal. DR-205 for circular concrete with end wall. DR-206 for low clearance concrete with end wall.
(2) See DR-142

PIAN

SECTION A-A

Possible Tabulation:
104-3

QIOWADOT	DR-612
STANDARD ROAD PLAN	
Rensolvs modiedeme	SHEET Of 1
dimalik	
apron tee inle	

SECTION

OIOWADOT	Seatice
STANDARD ROAD PLAN	DR-613
Slamin	
CONCRETE PIPE WITH "D" SECTION	

DESIGNER INFORMATION

(1) Refer to the following:

DR-201 for circular concrete.
DR-202 for low clearance concrete. DR-203 for circular meta
DR-204 for arch metal.
DR-205 for circular concrete with end wall.
DR-206 for low clearance concrete with end wall.
(2) Optional Type "D" section only when specified in tabulation.
(3) Existing structure
(4) See DR-122.

Possible Tabulation:
(1) Refer to the following and specify if inlet or outlet: DR-201 for circular concrete.
DR-202 for low clearance concrete
DR-205 for circular concrete with end wall.
DR-206 for low clearance concrete with end wall.
(2) Existing structure.
(3) If less than 12 inch cover over pipe in median, install median pipe and dike.

Possible Tabulation
104-3

ClOMADOT		REVISION
		2 10-15-19
STANDARD ROAD PLAN		DR-626
		SHEET 1 of 1
REVISIONS: Changed RF-2 Adapter to DR-122 Adapter.		
Shathlich		
PIPE EXTENSION - ADDING LANES		

SECTION
(2) See DR-501. If more than one diaphragm is specified install 15 feet apart or as specified

Possible Tabulation:
(1) Refer to the following. DR-203 for the circular metal DR-204 for arch metal.
(2) See DR-501. If more than one diaphragm is specified install 15 feet apart or as specified.

Possible Tabulations

PLAN

REVIIIONS: Modified note 1 to include e efererences to additiona a apron types.
ShatNich DR-203 for circular metal
DR-204 for arch metal (metal pipe only) DR-205 for circular concrete with end wall. DR-206 for low clearance concrete with end wall.
(2) Possible alignment if Type "D" Section or angle
Tee is used.
(3) Type"A" Diaphragm when specified, see DR-501.
(4) Outlet structure.
(5) Type "D" Section or angle Tee when specified.

Possible Tabulation:

CION/ADOT		$\frac{\text { REVSION }}{10 \text { O4-18-17 }}$
STANDARD ROAD PLAN		DR-642
		${ }_{\text {SHEET } 1 \text { of } 1}$
Shayt Niden		
APRON PIPE TEE INLET		

DR-204 for arch metal (metal pipe only). DR-205 for circular concrete with end wall.
DR-206 for low clearance concrete with end wall.

REVISIONS: Modified note 1 to include efefreences to a aditional apron types.
-
(1) Refer to the following

DR-201 for circular concrete R-202 for low clearance co R-203 for circular metal
DR-204 for arch metal (metal pipe only) DR-205 for circular concrete with end wall. DR-206 for low clearance concrete with end wall.
(2) Type "A" Diaphragm, see DR-501. If more than one diaphragm is specified, install them 15 feet apart or as specified.
(3) Bend may be accomplished by use of metal elbow, Pipe Adapter (DR-122), Type "D" Section, or Concrete Elbow (DR-141) as specified. Bend is considered incidental to the Length of pipe.

Possible Tabulation: 104-3

PLAN

UNCLASSIFIED LETDOWN

STRUCTURE SINGLE ELBOW

REVVIIONS: Modified note 1 to include references to additional apron types.

SECTION

Possible Tabulation:
104-3

