Iowa’s High-Mast Lighting Towers: A Proactive Approach to a Problem

Bruce Brakke
Iowa Department of Transportation

Terry J. Wipf, Brent M. Phares, Byung-Ik Chang
Iowa State University

Robert J. Connor
Lehigh University
The Problem

- Nationwide failures of HMLT.
- Inadequate design specifications based upon dissimilar structures.
Iowa DOT Background

- 233 High-Mast Towers.
- Statewide inspection in 2000.

- 140 ft tower failed near Sioux City in 2003
 - Fracture in base plate weld (37 mph NW wind).
- Subsequent statewide inspection
 - Other cracks found.
Iowa DOT Background

- Investigation by Dexter and others – speculated wind induced fatigue
- Several different retrofits developed and are currently being implemented
- Determined that further investigation needed to fully understand the problem (e.g., monitoring needed).
Questions to be Answered

- Design for vortex shedding
 - Mode(s) of vibration.
 - Loading profile.
 - Wind/pole interaction characteristics
 » Roughness length (z).
 » Lift coefficient (C_L).
Questions to be Answered

- Design for gusting
 - Mode(s) of vibration.
 - Loading profile.
 - Wind/pole interaction characteristics
 » Roughness length (z).
 » Coefficient of drag (C_D).
Overall Goal

- Develop a comprehensive long-term inspection and maintenance program.
- Add to the body of knowledge related to the design of slender high-mast structures.
Monitoring System - General

- Two poles being monitored.
- Hardware
 - Two dataloggers.
 - Long-range wireless.
 - Satellite communications.
 - 24x7 data collection
 » With triggering – specified wind speeds.
 » Rainflow stress cycle counting.
 » 1 minute averages calculated on “the fly”.
Monitoring System – Pole 1

- 14 strain gages.
- 4 accelerometers.
- 1 video camera.
- 1 anemometer
 - Wind speed.
 - Wind direction.
Monitoring System – Pole 2

- 6 strain gages.
- 3 anemometers
 - Wind speed.
 - Wind direction.
Data Processing

- Extract RMS and average wind speed, stress range, and acceleration (1 minute).
- Vibration information.
- Basic wind rose information (speed/direction)
 - Daily.
 - Monthly.
 - Seasonally.
 - Yearly.
Sample Results

S+60 Wind

Peak stress (ksi)

1 min. mean wind speed (mph)

Sample Results

S10
S12
S13
S14
Sample Results

Mode 2:
Frequency = 1.3 Hz
Vortex Shedding
Findings – Gusting

- Response primarily in first mode \((f_1 = 0.3 \text{Hz}) \).
- Overall, largest stress ranges are caused by natural wind gusts.
- Max stress range is approximately 14 ksi.
- Relatively few cycles
 - “Slow” vibration.
 - High wind speeds are not very frequent.
Findings – Vortex Shedding

- Significant vortex shedding observed in the second mode ($f_2 = 1.3$ Hz)
- Occurs during steady wind speeds of 4 - 11 mph (but, somewhat dependent upon wind direction).
- Stress range = $1.5 \sim 3.3$ ksi
- Maximum stress range caused by vortex shedding is approximately 3.3 ksi.
- Relatively high number of cycles
 - “Fast” vibration.
 - Low wind speeds more common.
Future Work

- Wind tunnel testing
 - Scale models to validate field C_D, C_L.
 - Wind profile pressure information.
- Analytical modeling
 - Validated with field/wind tunnel data.
 - Extrapolate to nationwide pole geometries.
- Develop proposed specification modifications.
Acknowledgement

- Iowa Highway Research Board.
- Midwest Transportation Center.
Thank You

Questions?