Laboratory and Field Evaluation of the 24th Street Bridge

Terry Wipf, Iowa State University
Brent Phares, Iowa State University
Travis Hosteng, Iowa State University
Jake Bigelow, Iowa State University

August 20, 2009
24th Street Bridge Background

- Council Bluffs, Iowa
- Over Interstate 80/29
- Constructed in two phases
- Opened in Spring of 2009
Objectives

- Document the effectiveness of innovative construction techniques
 - Laboratory component
 » Answer design and construction questions
 - Field component
 » Evaluation during and after construction
Bridge Description

- Two spans
- 353.5 ft long
- 6 lanes plus sidewalks (99 ft wide)
- Precast deck panels (post tensioned)
- Composite steel girders
Bridge Plan/ Girder Layout

Cross Frame Spacing

11 Spans @ 9'-0" = 99'-0"
3'-6"
5'-6"

Bridges Girders (Typ.)

Cross Frame (Typ.)

Driving Direction

South Abutment

N

Pier

North Abutment

24th Street
Precast Panel
Bridge Plan/ Panel Layout

South Abutment

North Abutment

2'-9" 3'-3"

Phase I Construction

Phase II Construction

Closure Pour

Deck Panel (Typ.)

Shear Stud Pocket (Typ.)

24th Street

1'-0" Closure Pour

1'-6"

Closure Pour

10'-0" (Typ.)
Bridge / Panel Layout
Laboratory Testing

- Stud pocket bend test
 - Confined space in pocket
 - Able to conduct bend test on all studs
Laboratory Testing

- Grout flowability
 - Sufficient grout flow from stud pockets to haunch
Laboratory Testing

- Duct splicing performance
 - 1 in. x 3 in. duct splice checked for grout tightness
 - Waterproof duct tape
 » Simple
 » Works
Laboratory Testing

- Panel transverse joint shear
- Surface treatments
 - Control (no roughing)
 - Diamond plate forms
 - Chemical etching
 - Sandblasting (best performance: 578 psi)
Field Testing

- Corrosion Monitoring
 - 6 pre-stress strands
 - 6 sacrificial post-tensioning strands

- No corrosion taking place as of June
Field Testing

- Handling Performance
Field Testing

- Panel Joint Pressure
 - Monitored during post-tension
Field Testing

- Live load testing
 - Gauges located on north span
 » Deflection, Strain, & Acceleration
Field Testing

- Live load testing
 - 6 transverse load positions
 - Tandem axle dump truck
Field Testing

- Live load testing
 - Deflection @ midspan of north span
 - Truck on south span: max 0.15 in.
 - Truck on north span: min -0.31 in.
Field Testing

- Live load testing
 - Strain
Field Testing

- Live load testing
 - Strain

<table>
<thead>
<tr>
<th>Gauge Location</th>
<th>Bottom Flange</th>
<th>Top Flange</th>
<th>Bottom of Slab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abutment</td>
<td>-4 to +14</td>
<td>-5 to +6</td>
<td>NS</td>
</tr>
<tr>
<td>Pier</td>
<td>-16 to +3</td>
<td>-1 to +5</td>
<td>NS</td>
</tr>
<tr>
<td>Mid-span</td>
<td>-22 to +66</td>
<td>-5 to +5</td>
<td>-2 to +6</td>
</tr>
</tbody>
</table>
Conclusion & Recommendations

- Laboratory Testing
 - Stud pockets
 » Installation
 » Bend test
 - Grout can sufficiently flow from stud pocket into haunch
 - Waterproof duct tape is sufficient for sealing duct splices
 - Sandblasting surface of joint provide highest shear resistance
Conclusion & Recommendations

- Field Testing
 - No corrosion indicated
 - Minimal pressure at mid-span joint during post-tensioning
 - Deflections were less than L/6770
 - Max and minimum strain occurred at bottom flange mid-span
 » Max tension 66με
 » Max compression 22με
24th Street Bridge

• Questions??