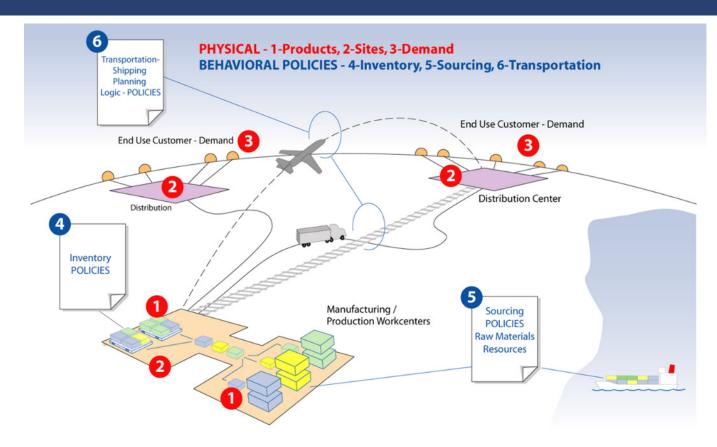




## Statewide Freight Transportation Network Optimization Strategy – Project Update

September 9, 2016


- Project Overview
- Key Recommendations
- Next Steps



# Iowa Statewide Freight Network Optimization

- Vision: To effectively identify & prioritize investment opportunities for an optimized freight transportation network to lower transportation costs & promote business growth.
- lowa DOT can optimize statewide freight transportation network to reduce transportation costs
  - Traditional approaches focus more on capacity planning
  - Traditional methods don't quantify cost saving opportunities in a multimodal network
- Project uses a demand-based supply chain network design and optimization approach to Iowa DOT planning

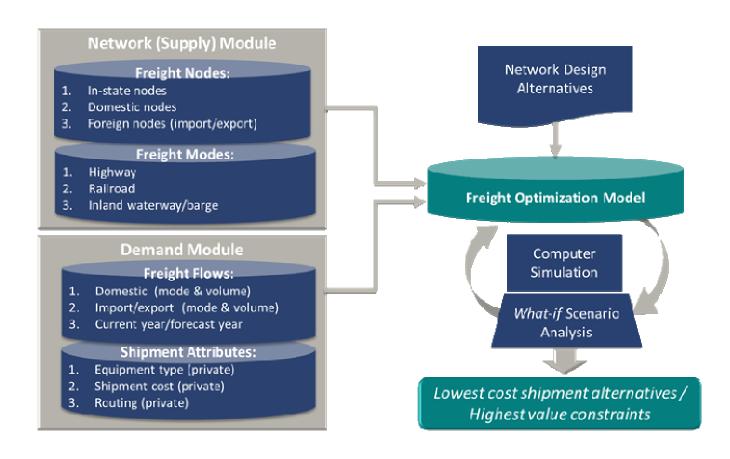
#### Supply Chain Network and Optimization



Up to 80% of the landed costs are locked in with the supply chain network



## Demand-Based Supply Chain Network Design and Optimization Strategy Development


6

- Commonly used to design and optimize global commercial supply chains
- Focuses on meeting end users' demand
- Identifies opportunities to invest in supply chain network





#### **Business Architecture Overview**





### **Optimization Analysis**

- Quantitative Analysis
  - Cost and network capacity
  - Economic viability
  - Improved network resilience

- Qualitative Analysis
  - Strategic alignment
  - Funding availability
  - Job creation and local buy-in
  - Service levels / transportation time
  - Road mile reduction
  - Etc.

# Benefits of Multi-Modal Freight Network Optimization



- Determine the highest value multi-modal infrastructure public and private investments
- Reduce road freight truck traffic
- Improve transportation network resiliency
- Provide a foundational model to help lowal businesses optimize their supply chains

quèt•ica

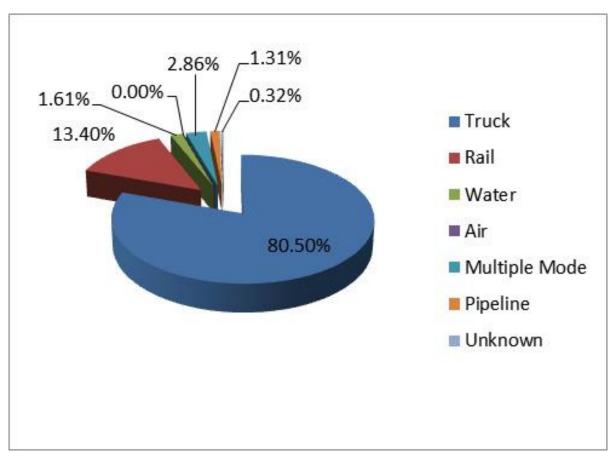
### Complementary Tools for DOT Planning

#### **Travel Demand Modeling (iTRAM)**

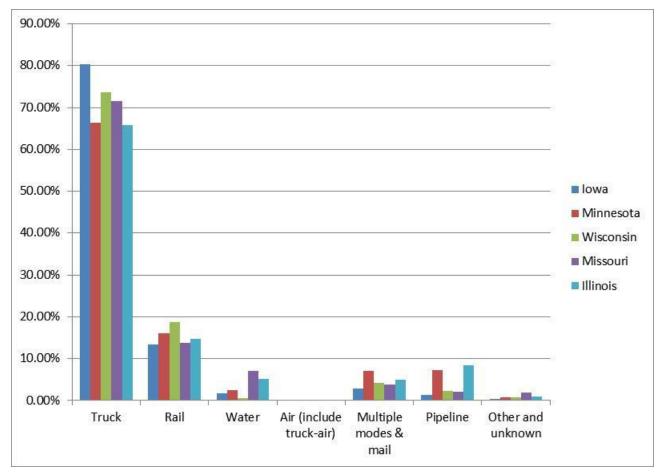
- Trip generation (how many trips will be made?)
- Trip distribution (where will the trips go?)
- Mode choice (what modes of transportation will the trips use?)
- Trip assignment (what routes will the trips take?)

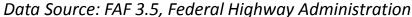
#### **Freight Optimization (iFROM)**

- Analyze high value constraints
- Quantify opportunities to lower transportation costs and improve service levels
- Design multimodal and freight consolidation solutions to reduce truck miles and carbon emissions
- Freight optimization uses network data from the travel demand model
- Optimization results fed back to the travel demand model to analyze traffic pattern changes




## Scope of the Iowa Freight Optimization Model (iFROM)


- Modes included: Truck, Rail, Water, multimodal
- 43 commodities
- Data is disaggregated to 99 Iowa counties and 40 foreign countries/groups
- Domestic commodity flow data primarily from Federal Highway Administration's Freight Analysis Framework
- Import/Export commodity flow data from EDR Group/U.S. Customs & Border Protection
- □ Base year: 2010; Forecast year: 2040


### Iowa Freight Volume by Mode

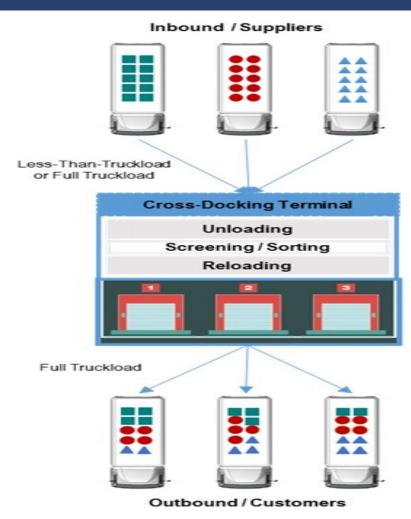
#### Over 98% of the freight volume is included in the scope



# Comparing Iowa Domestic Freight Flows with Adjacent States








## Recommendation – Cross Dock Facility



#### Cross Dock Overview

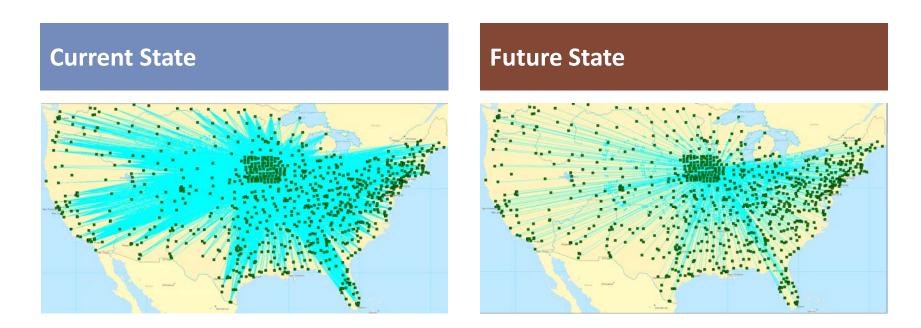
- Truck freight arrives via LTL or FTL
- Freight is unloaded and sorted based on destination
- Outbound trucks are loaded with freight going to the same area
- LTL freight is consolidated to long-haul FTL
- Can offer packaging / palletizing services





#### Cross-Dock Opportunity Analysis

- Identified four regions based on freight density
- Central Iowa S has the highest cost saving, but Central Iowa A and Eastern Iowa are more viable options because of existing access to interstate highways
- Selected <u>Eastern Iowa</u> as the primary site candidate with the concept to co-locate cross-dock and intermodal facilities in a logistics park


| Location         | Total Annual Saving Opportunity |
|------------------|---------------------------------|
| Central Iowa – A | \$867 Million                   |
| Central Iowa – S | \$870 Million                   |
| Eastern Iowa     | \$852 Million                   |
| Western Iowa     | \$670 Million                   |



## Target Market Segment in Eastern Iowa Estimated 2021 Numbers

| Item                                    | Within 100-Mile Radius | Within 50-Mile Radius |
|-----------------------------------------|------------------------|-----------------------|
| Estimated Annual<br>Consolidated Loads  | 500,000                | 170,000               |
| Average Distance to Cross-Dock          | 66 Miles               | 34 Miles              |
| Average Weighted Distance to Cross-Dock | 52 Miles               | 15 Miles              |

### Cross-Dock Network Impact



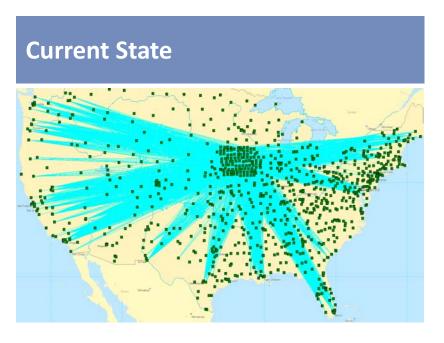
#### Benefits:

- Leverage freight consolidation to reduce transportation costs
- Reduce long distance truck traffic and improve environmental sustainability



## Recommendation - Intermodal Facility




### **Total Opportunity Size**

#### The total market opportunity for high volume traffic lanes:

| Item                               | Opportunity |
|------------------------------------|-------------|
| Total Number of Outbound Container | 377,000     |
| Est. Number of Inbound Containers  | 139,000     |
| Est. Container Shortage            | 238,000     |
| Est. Annual Loaded Containers      | 516,000     |

| Item                                  | Opportunity        |
|---------------------------------------|--------------------|
| Annual Gross<br>Transportation Saving | \$340 Million      |
| Empty Container<br>Reposition Cost    | (\$143<br>Million) |
| <b>Annual Net Savings</b>             | \$197 Million      |

### Case Study 2 – IM Facility Network Impact





#### Benefits:

- Leverage rail network to reduce transportation costs
- Reduce truck traffic and improve environmental sustainability



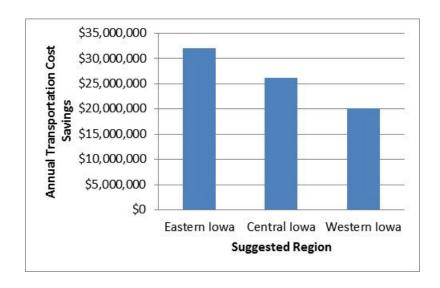
## Business Case – An IM Facility

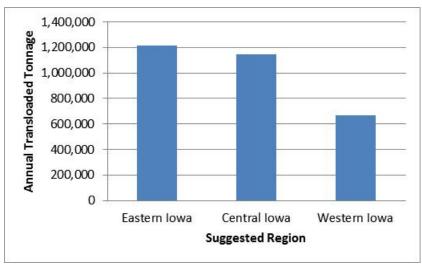
#### **Volume Estimate**

| Total Number of Annual Lifts         | 68,488 |
|--------------------------------------|--------|
| Number of Outbound<br>Containers     | 34,244 |
| Number of Inbound<br>Containers      | 11,527 |
| Total Number of Loaded<br>Containers | 45,771 |
| Total Number of Container<br>Deficit | 22,717 |

#### **Cost Saving Estimate**

| Annual Net Cost Saving Opportunities                             | \$15.5<br>Million |
|------------------------------------------------------------------|-------------------|
| Estimated Transportation Cost Saving from Truck to IM Conversion | \$29.5<br>Million |
| Empty Container<br>Reposition Costs                              | -\$14<br>Million  |





## Recommendation - Transloading Facility

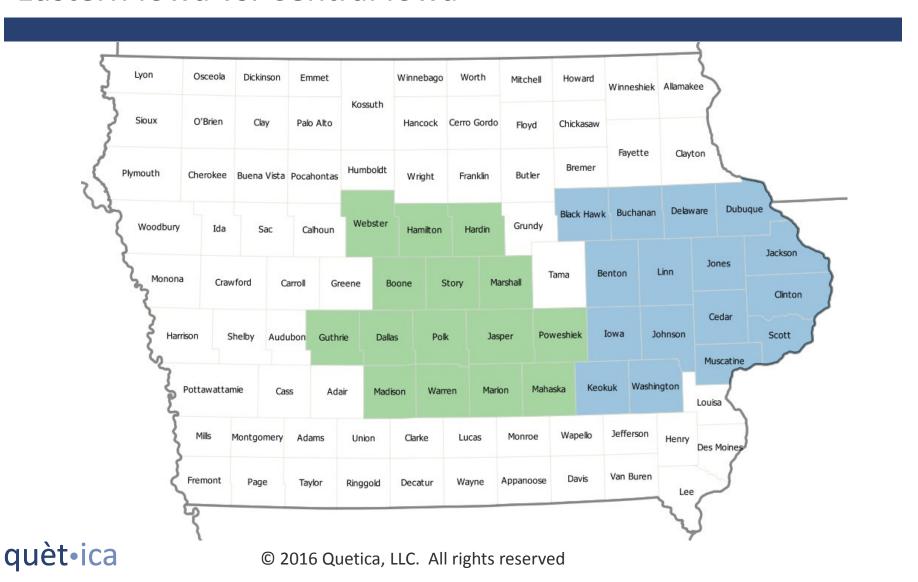
quèt•ica

### **Opportunity Analysis**

- Transload facilities allow shippers to transfer freight between two modes and leverage lower cost shipment options
- In the statewide model, three locations are identified as candidates for transload facilities to provide largest cost saving opportunities






## Business Case – A Transload Facility in Eastern Iowa

| Scenario             | % of Total<br>Market<br>Opportunity | Annual<br>Railcar<br>Number | Facility Size | Initial<br>Investment | Annual<br>Cost<br>Savings |
|----------------------|-------------------------------------|-----------------------------|---------------|-----------------------|---------------------------|
| Conservative<br>Case | 7.78%                               | 1,002                       | 15 acres      | \$5.5 million         | \$2.5<br>million          |
| Base Case            | 10%                                 | 1,837                       | 15 acres      | \$5.5 million         | \$3.2<br>million          |

Note: \$8 per ton transloading fee is included in the cost estimate

## Target Market Segment

#### Eastern Iowa vs. Central Iowa



## Recommendation – Logistics Park

## A Logistics Park Business Case

| Facility                   | Base Case Est. Annual Savings | Conservative Case Est. Annual Savings | Base Case Est.<br>Annual Loads | Conservative Case Est. Annual Loads |
|----------------------------|-------------------------------|---------------------------------------|--------------------------------|-------------------------------------|
| Cross-Dock                 | \$34.2 Million                | \$22.4 Million                        | 52,000                         | 52,000                              |
| Intermodal                 | \$15.5 Million                | \$12.8 Million                        | 68,500                         | 58,800                              |
| Transload                  | \$3.2 Million                 | \$2.5 Million                         | 6,900                          | 3,300                               |
| Combined<br>Logistics Park | \$52.9 Million                | \$37.7 Million                        | 127,400                        | 114,100                             |



#### **Additional Benefits**

| Items                                               | Annual Savings/Reduction |
|-----------------------------------------------------|--------------------------|
| Crash Cost Savings in 2021                          | \$31.3 Million           |
| Carbon Reduction Savings in 2021 (3% Discount Rate) | \$81.6 Million           |
| Reduction of Long-Haul Truck Freight in 2021        | 170,000 Trucks           |
| Truck Mile Reduction in 2021                        | 150 Million Miles        |



#### **Next Steps**

- Data refresh
  - 2014 domestic commodity flow database from Federal Highway Administration
  - 2014 import/export data from US. Customs and Border Protection
  - Aggregated private datasets
- Expands the study's geographic scope
  - Includes counties within 100 mile radius of Iowa border in 7 adjacent states
- Reruns the iFROM
- Develops data visualization capabilities for freight data analytics

#### 32

#### Questions

Richard Langer,

**Managing Director** 

Quetica, LLC

www.quetica.com

651-964-4646 ext. 800

richard.langer@quetica.com

Weiwen Xie,

**Executive Director** 

Quetica, LLC

www.quetica.com

651-964-4646 ext. 803

weiwen.xie@quetica.com

