

The Iowa RTN Concepts and Solutions

Chuck B. Jones, PLS Support Engineer GNSS Network Reference Stations

Outline

Motivation for Network RTK

•Development of an RTCM Network RTK Message Format

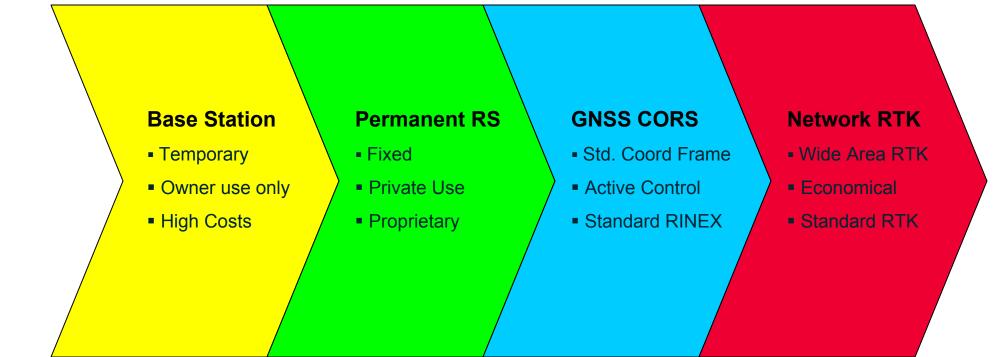
- RTCM 3.0 Network Message
- Master-Auxiliary Concept

•Leica Implementation of the Master-Auxiliary Concept

- MAX
- iMAX

•Leica GNSS QC Analysis of Baseline vs. Network Solutions

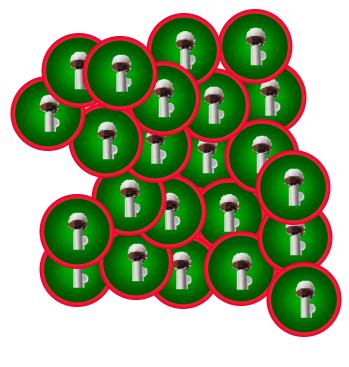
•The Iowa Real Time Network


- Real Time Products
- Static Products

Motivation for Network RTK

Reference Station Evolution

Conventional Single Base RTK

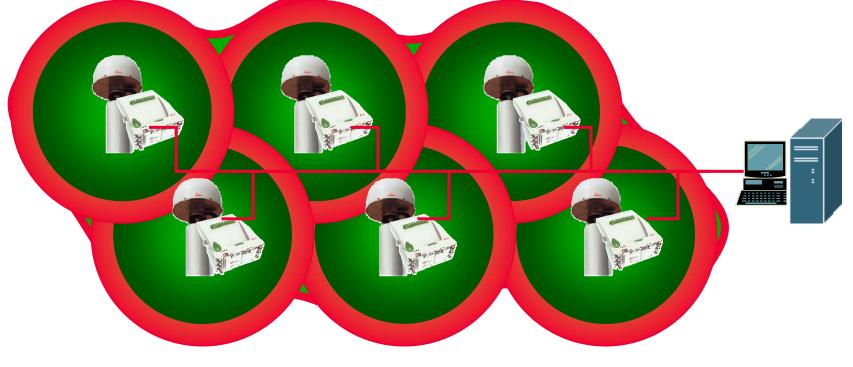


Accuracy, Reliability, Availability Good Poor GPS RTK base station

- Typically temporary installation on a tripod
- Reference for GPS operations in a small area (up to 30km) over a limited time

Limitations of Single Base RTK

Accuracy, Reliability, Availability Good Poor


- High density of stations required for good coverage
- No continuity in quality of service (accuracy, reliability, availability)
- Higher costs
- Reduced productivity

Motivation for Network RTK

- Model and estimate distance-dependent errors
 - Main error sources: ionosphere, troposphere and satellite orbits
- Provide network correction information to rover users

Poor

Accuracy, Reliability, Availability

Leica Geosystems

⁷ Good

Development of an RTCM Network RTK Message Format

The Radio Technical Commission for Maritime Services (RTCM)

Founded in 1947 as a US State Dept Advisory Committee, now an independent organization

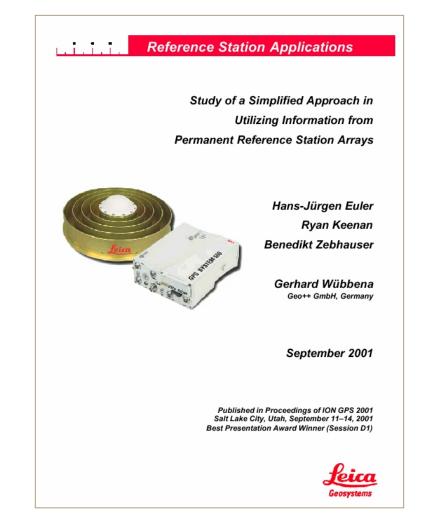
Supports the development of GNSS message format standards

Membership includes

22 government agencies from 7 nations56 manufacturers from 14 nations41 other stakeholders

Standing Committee 104 focuses on the Differential GNSS Standards

RTCM SC-104: Differential GNSS Standards


Originally set up in 1983 to develop standards for DGPS to achieve 5 meter accuracy navigation & positioning

- Version 1 was replaced by Version 2, when implementation problems turned up (1990)
- Version 2.1 added Real-Time Kinematic (RTK) messages to provide decimeter accuracy of short ranges (1994)
- Version 2.2 expanded differential operation to GLONASS, provided ancillary RTK messages (1998)
- Version 2.3 added several new messages to improve RTK, radio beacon broadcasts, use of Loran-C (2001)
- Inefficiency of Version 2 messages led to the development an improved formatmore efficient, higher integrity, and simplicity of development- Version 3.0 (2004)
- Version 3 primarily aimed at improving RTK, supporting networked RTK

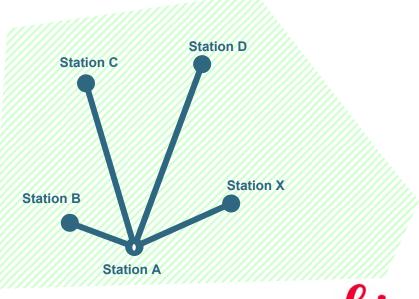
The RTCM 3.0 Master-Auxiliary Concept (MAC)

- Purpose of the Master-Auxiliary Concept
 - To overcome the issues of the existing approaches
 - To provide interoperability between network and rover systems
 - To transmit all relevant network correction data from a reference network to the rover user in a highly compact and standardized form by representing ambiguity levelled observation data as correction differences of dispersive and nondispersive data.

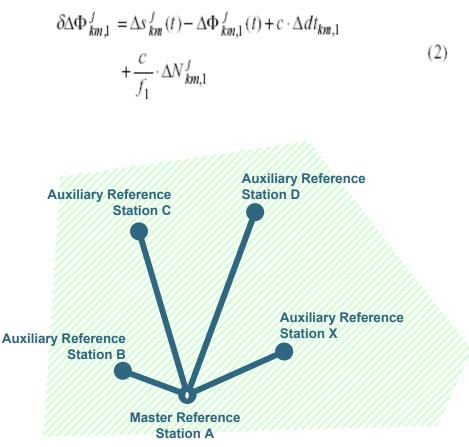
RTCM 3.x Message Groups, Message Types (MT)

• Observations

– GPS L1	MT: 1001, 1002
– GPS L1/L2	MT: 1003, 1004
– GLONASS L1	MT: 1009, 1010
– GLONASS L1/L2	MT: 1011, 1012
Station Coordinates	MT: 1005,1006
Antenna Description	MT: 1007,1008
 Auxiliary Operation Information 	MT: 1013
Supplemental	
– GPS Ephemeris	MT: 1019
– GLONASS Ephemeris	MT: 1020
– Network RTK (MAC)	MT: 1014-1017
 Transformation Parameters 	MT: 1021-1027
– Proprietary Messages	MT: 4088-4095



$$\Delta \Phi^{J}_{km,l}(t) = \Delta s^{J}_{km} + \Delta \delta r^{J}_{km}(t) + c \cdot \Delta dt_{km,1} + \Delta T^{J}_{km}(t) - \frac{\Delta I^{J}_{km}(t)}{f_{1}^{2}} + \frac{c}{f_{1}} \cdot \Delta N^{J}_{km,l} + \Delta \varepsilon_{1}$$
⁽¹⁾


where

- Δs_{km}^{j} geometric range term including antenna phase centre variations which have been applied by the network processing software.
- $\Delta \delta r_{km}^{j}$ broadcast orbit error.
- Δdt_{km} receiver clock error.
- ΔT_{km}^{j} tropospheric refraction error.
- ΔI_{km}^{f} frequency dependent ionospheric delay.
- ΔN_{km}^{j} frequency dependent integer ambiguity.
- $\Delta \epsilon$ frequency dependent random measurement error.
- t epoch.
- c speed of light.
- f_1 frequency of L1.

Description of the MAC correction differences begins with the definition of a single difference L1 phase equation between station *k* and *m* and satellite *j*. (L2 equations follow similarly.)

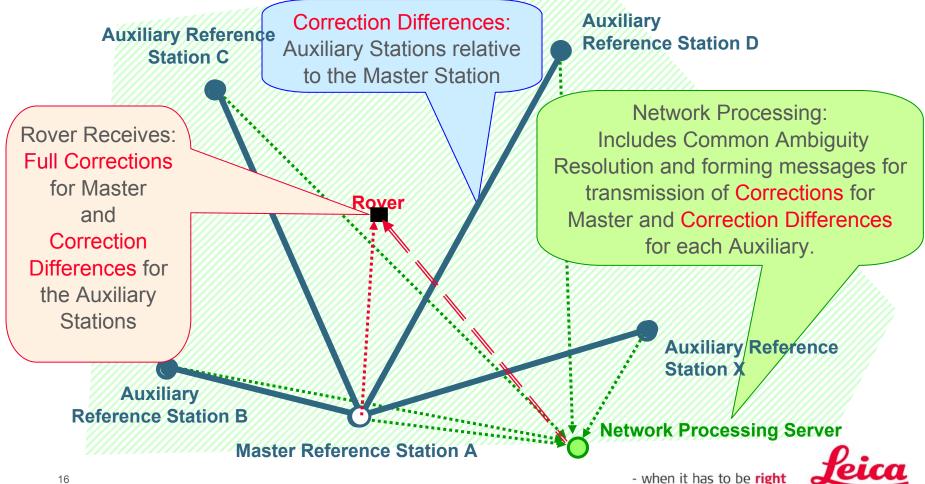
Correction differences are formed by subtracting the *ambiguityleveled phase corrections* of a designated master reference station from the equivalent corrections of the remaining auxiliary reference stations in the network.

This is the main task of the network processing software is to reduce the ambiguities for the phase ranges from all reference stations in the network to a common level.

$$\delta \Delta \Phi_{km,l}^{J, dlsp} = \frac{f_2^2}{f_2^2 - f_1^2} \delta \Delta \Phi_{km,l}^J \\ - \frac{f_2^2}{f_2^2 - f_1^2} \delta \Delta \Phi_{km,2}^J$$
(3)

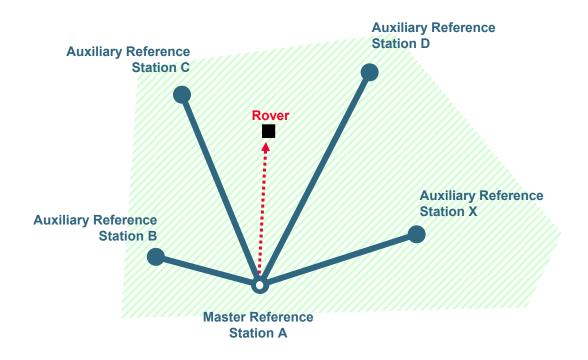
$$\delta \Delta \Phi_{km,1}^{J, non-dtsp} = \frac{f_1^2}{f_1^2 - f_2^2} \delta \Delta \Phi_{km,1}^J$$

$$-\frac{f_2^2}{f_1^2 - f_2^2} \delta \Delta \Phi_{km,2}^J$$
(4)


To further reduce the amount of data transmitted to the rover, the correction differences are separated into a dispersive component (ionospheric refraction) and a nondispersive component (tropospheric refraction and orbit errors).

In general, non-dispersive errors change more slowly over time compared to the dispersive errors, especially in times of high ionospheric activity.

RTCM MAC Concept for Network Transmission


One Master Reference Station, plus Some Auxiliary Reference Stations -> One Network Cell

Geosystems

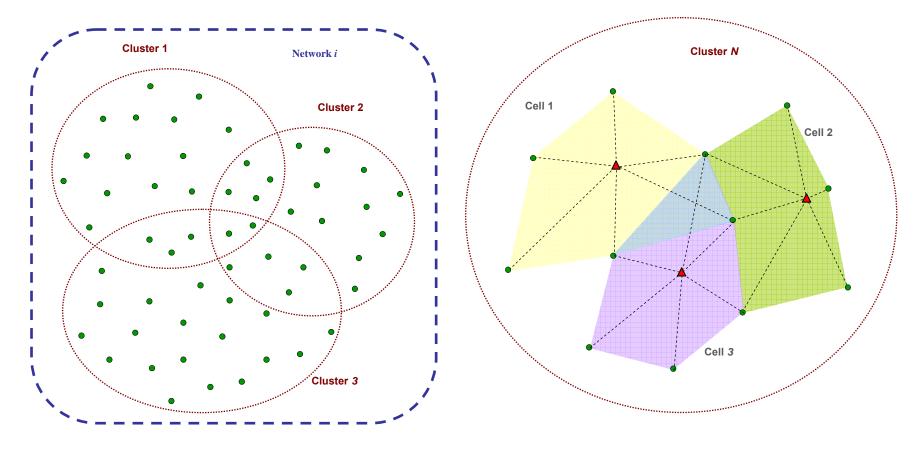
The rover receives the raw carrier phase data for the master reference station and the ambiguity-leveled correction differences for each auxiliary reference station.

Optimal correction differences can then be interpolated for the position of the rover, due to the common integer ambiguity level of the reference stations, and used to improve the double difference phase residuals of the master-rover baseline.

Benefits of the RTCM MAC concept ...

As it is a standard, ALL processes are fully described & documented.

- No need for any additional proprietary message
- Full interoperability is guaranteed between rovers and control center and between different control centers
- Networking Software is "transparent" regarding Reference Station data
- Network Operators can concentrate on valuable additional services


➔ Rovers will finally perform optimally

Leica Implementation of the Master – Auxiliary Concept

Leica SpiderNet Concept Networks, Clusters & Cells

Reference/Auxiliary station
 Master station

Network Processing is done in 4 main steps:

- Pre-processing of raw observations
- Estimation of Float Ambiguities (LAMBDA method)
- Fixing of Float Ambiguities (Constraints)
- Provision of network corrections

For estimation of the relevant parameters, including network ambiguities, satellite and receiver clocks, satellite orbits and deterministic atmospheric models, SpiderNet uses zero-difference code and carrier phase measurements in an mathematically optimal observation based Kalman filter.

This approach avoids the use of linear combinations of GPS observables, such as the well known wide-lane and ionosphere-free combinations, which magnify measurement noise and multipath.

Pre-processing of raw observations

- Cycle slip detection
- Application of Troposphere model
- Application of lonospheric model
- Code and phase range checks
 - Gross errors in station coordinates
 - Bad data
- Orbit calculation (Broadcast and Precise)

Estimation of Float Ambiguities

- Cycle slip repair
- Ionosphere activity parameter effects the temporal parameters used in stochastic ionosphere modelling
- Clock parameters estimation
- New Orbits are taken into account at start of new estimation cycle
- New Satellites are taken into account at start of new estimation cycle

Fixing of Float Ambiguities

- GPS SpiderNET uses zero difference processing, so it is necessary to constrain the ambiguities
 - For one station (all satellites are fixed)
 - For one satellite (all stations are fixed)
- Constraining is done automatically
- Constraints define the ambiguity level
- Repeated fixing of ambiguities and verification of ambiguities takes place

Provision of network corrections

- Reduction of raw data
 - Broadcast ephemeris
 - Common receiver clock
 - Fixed ambiguities
 - Geometric range
- Network corrections are on a common ambiguity level within one cluster

Configurable Network Processing Parameters

- Elevation mask
- Ionosphere model
- Troposphere model
- Orbit model
- Ionosphere activity

onfigure Network Proce	ssing Parameters
Processing Parameters Reprocessing	
Elevation mask:	10
Ionosphere model:	No Model
Troposphere model:	Modified Hopfield
Orbit model:	Automatic
Ionosphere Activity:	Medium
	Default
	OK Cancel

*

Network Processing

Configurable Parameters - Elevation mask

- Observations of low elevation satellites can sometimes prove to be problematic because of:
 - An increase in measurement noise
 - An increase in measurement error
 - A higher likelihood of loss of data
- In such cases the recommended procedure is to increase the satellite elevation cut-off angle to limit the influence of bad data.
- If there are problems with the resolution of ambiguities an increase in the cut-off angle might also improve processing. This is because low elevation satellites are more influenced by multipath, un-modelled atmospheric effects and measurement noise.

Network Processing

Configurable Parameters - Ionosphere model

- The lonospheric model parameter defines which model is used to reduce the impact of the ionosphere. The following models for the ionosphere are available:
 - No model
 - Klobuchar model
- The ionospheric activity follows an eleven years cycle with its last peak in 2000. The Klobuchar model reflects the 11-year cycle of solar activity and can be advantageous during the time of high solar activity.
- The Klobuchar model should correct for global ionospheric disturbances. In general, it models about 50% of the ionosphere.
- The Klobuchar model is a rather coarse model and hence, there is not much benefit to using it at times of low ionospheric activity.
- The parameters for the Klobuchar model are provided by the navigation message that is sent by each satellite.

Network Processing

Configurable Parameters - Troposphere model

Various models exist (all based on information of pressure, temperature and relative humidity of the ground station) which reduce the tropospheric path delay.

- The following models for the troposphere are available:
 - No model
 - Modified Hopfield
 - Saastamoinen
 - Niell
- Standard troposphere models usually agree for high elevation satellites (difference of few millimeters).
- The differences between the models are only significant for low elevations below 5 degrees.
 when it has to be right

Leica Geosystems

Network Processing Configurable Parameters - Orbit model

- Two orbit model options are available:
 - Broadcast only
 - Automatic
 - Broadcast ephemeris used for sending network RTK corrections
 - Precise ephemeris used for network ambiguity resolution
- Precise ephemeris (IGS Ultra Rapid Orbits)
 - are near real-time orbits delivered 4 times a day
 - have an accuracy of approx. ~10cm
- Broadcast ephemeris
 - have an accuracy of approx. ~2m

Steps to Network Positioning

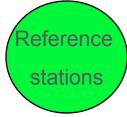
Reference stations

Fix the carrier phase ambiguities between the reference stations.

Calculate the errors for each reference station.

Interpolate the estimated reference errors to the location of the rover.

Apply corrections to the data from the master reference station.


Rover

Rover processing to calculate a position.

Leico Geosystems

Steps to Network Positioning (Spider MAX)

Fix the carrier phase ambiguities between the reference stations.

SpiderNET

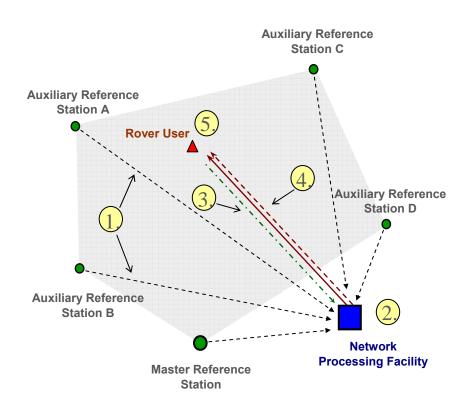
MAX-

Calculate the errors for each reference station.

Interpolate the estimated reference errors to the location of the rover.

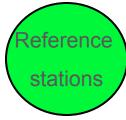
Apply corrections to the data from the master reference station.

Rover receiver


Rover

Rover processing to calculate a position.

MAX Corrections



- 1. Transmission of raw observation data from the reference stations to the network processing facility.
- 2. Network estimation process including **ambiguity resolution** to reduce the stations to the common ambiguity level.
- 3. (Optional) NMEA GGA position received from the rover at the network processing facility. The most appropriate reference stations are chosen for the rover based on its location.
- Formation and transmission of RTCM 3.0 network message using corrections for the Master station and correction differences for the auxiliary stations.
- 5. Computation of high accuracy rover position using the full information from the reference network.

Steps to Network Positioning (Spider iMAX)

Fix the carrier phase ambiguities between the reference stations.

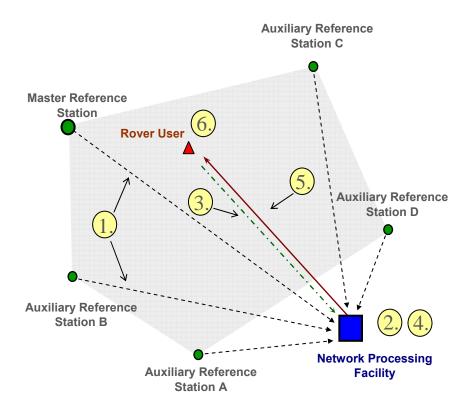
Calculate the estimated errors for each reference station.

Interpolate the estimated reference errors to the location of the rover.

Apply corrections to the data from the master reference station.

Rover processing to calculate a position.

-iMAX——


Rover receiver

SpiderNET

Rover

Leica Geosystems

i-MAX Corrections

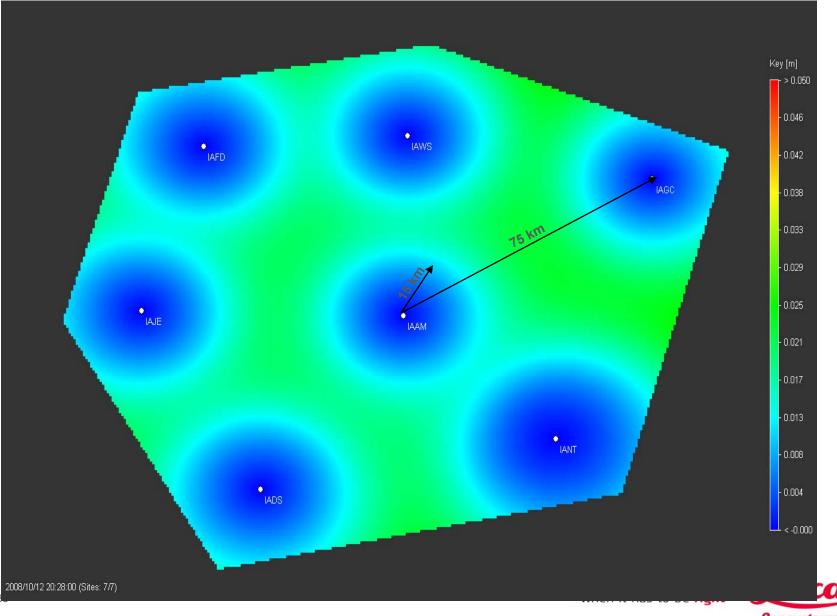
- 1. Transmission of raw observation data from the reference stations to the network processing facility.
- 2. Network estimation process including **ambiguity resolution** to reduce the stations to the common ambiguity level.
- 3. NMEA GGA position received from the rover at the network processing facility. The most appropriate reference stations are chosen for the rover based on its location. The master station is chosen as the reference station closest to the rover.
- 4. Leica GPS Spider calculates the **network corrections** for the rover and applies them to the observations from the master station.
- 5. Formation and transmission of RTCM 2.3 or Leica format corrections from the master station.
- 6. Computation of high accuracy rover position using the reference network.

Network Processing and Performance Understanding how SpiderNET works

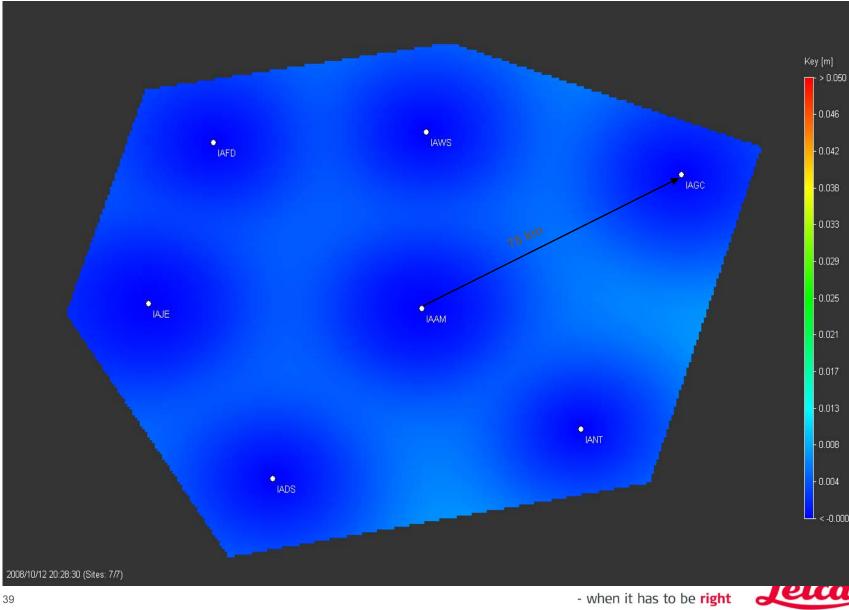
Network RTK corrections – RTK Proxy Server

- iMAX Network RTK corrections
 - Rover NMEA required
 - Two-way communication (duplex) is always required
 - Master-Auxiliary correction differences used to correct raw observations of Master station
 - Send corrections to rover

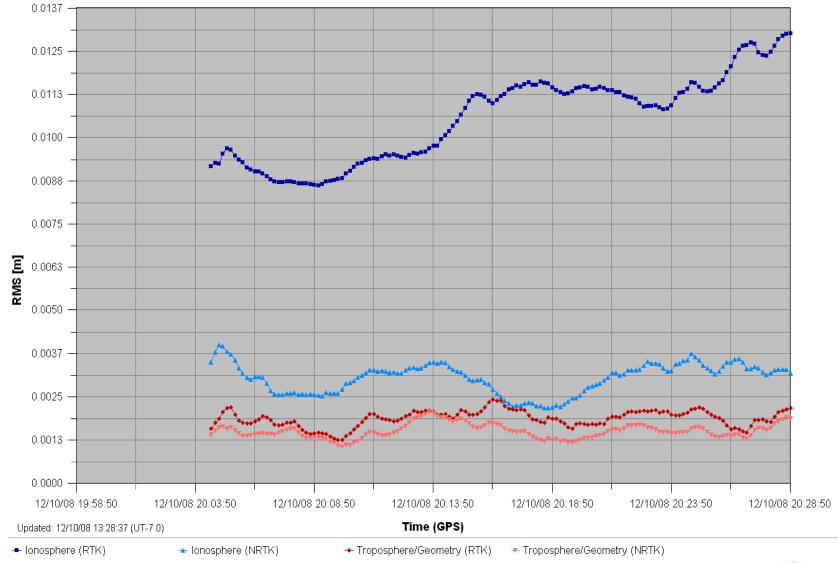
MAX Network RTK corrections


- Send Master-Auxiliary correction differences to rover
- Send raw observations of Master station to rover
- Rover applies Master-Auxiliary correction differences in baseline processing
- One-way communication (simplex) is supported when providing MAX Network RTK corrections based on Single Cells (Master and Auxiliary Stations are predefined)

Leica GNSS QC Analysis of Baseline vs. Network Solutions



Graphical display of residual ionosphere error for single baseline RTK calculated in real time using data from Leica GNSS Spider RTK processing.



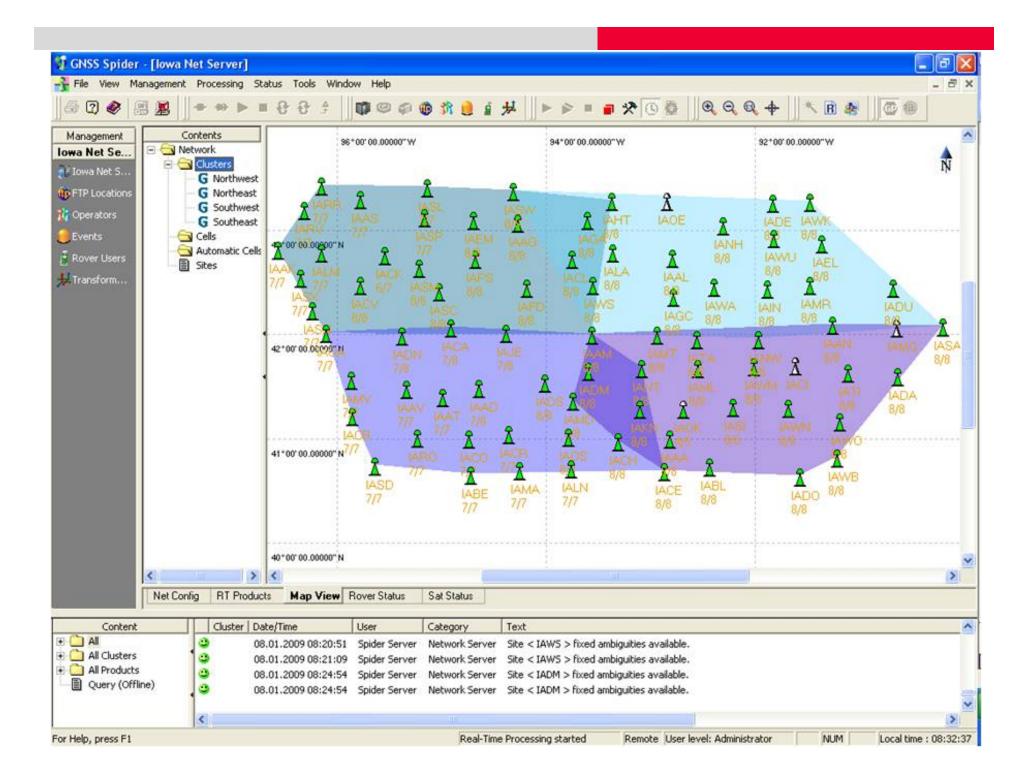
Geosystems

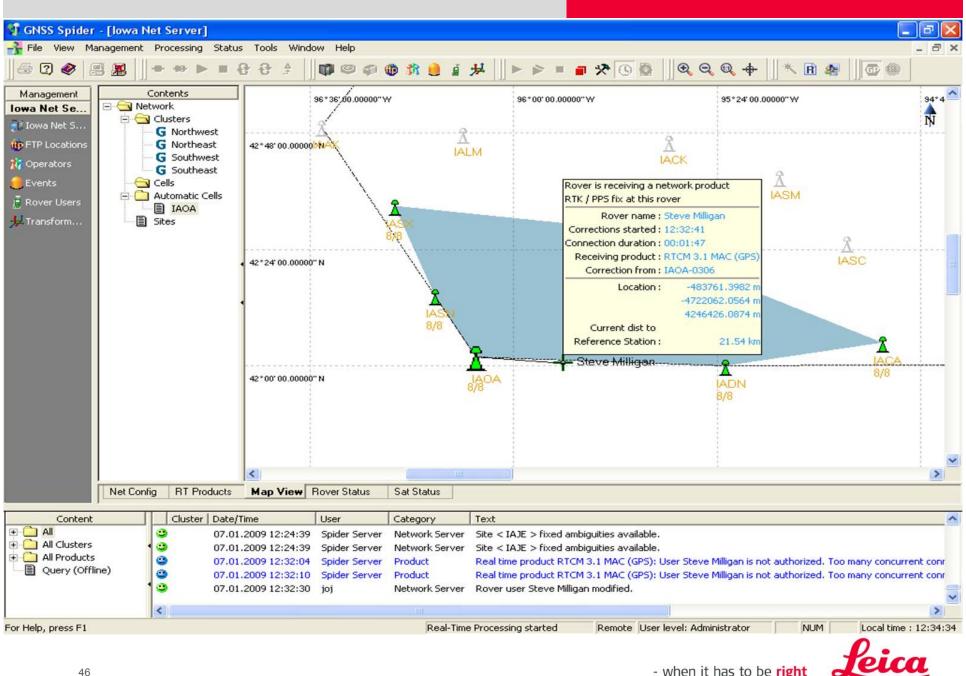
Graphical display of residual ionosphere error across the RTK network calculated in real time using data from Leica GNSS Spider network RTK processing.

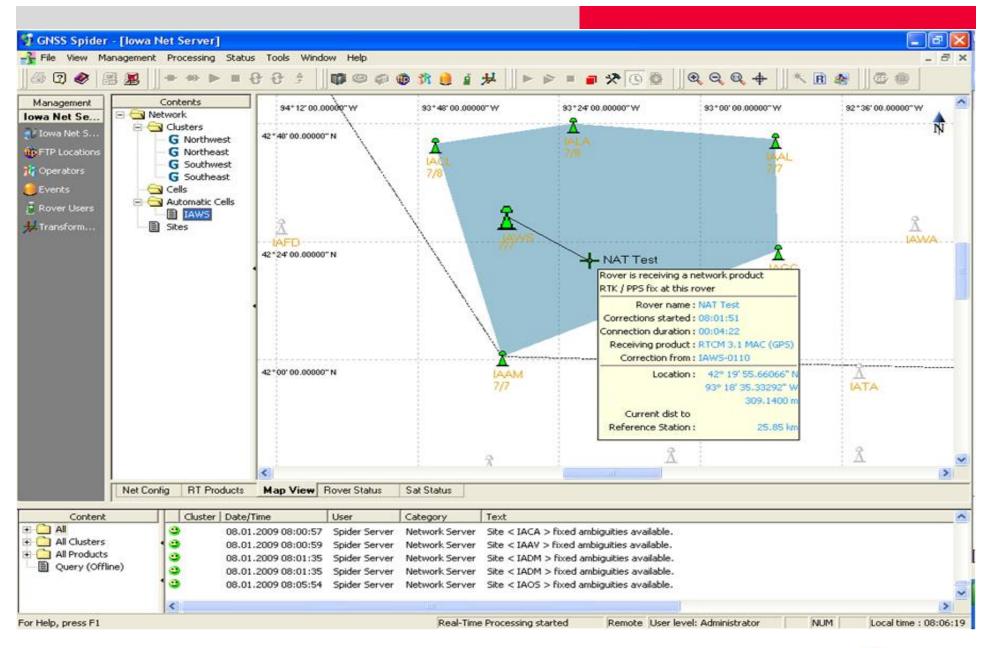
Geosystems



Time series of global RMS values for residual lonosphere and troposphere errors

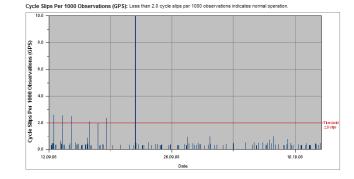

The Iowa Real Time Network



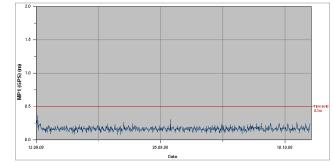

💱 GNSS Spider	- [lowa Net Server]															×
子 File View Ma	anagement Processing Too														- 8	×
	∄ 😹 🗍 ↔ 🅨 🖿	884	• •	🕸 🏦 🧕 I	ă ₩ ►		-	• *	•	Ø	•	Q	Q + ★ B	ه 🗗 🥵 ا	60	
Management	Contents	Site Name 🛛 🗸	Site Code	Fixed/Available	Last update	G02	G05	G10	G12	G24	G29	G30	07.	01.2009 00:00		-
Iowa Net Se	Network Geographic Clusters	IAAG	IAAG	7/7	11:29:46											
TP Locations	G Northwest	ІААК	IAAK	7/7	11:30:20											
🚺 Operators	G Southwest	IAAM	IAAM	7/7	11:30:37										1	
Events	Cells	IAAS	IAAS	7/7	11:29:31											
📕 Rover Users 😾 Transform		IACA	IACA	7/7	11:30:29											=
		IACK	IACK	7/7	11:29:36											
		IACL	IACL	7 7	11:30:42							i i i i				
	•	IACV	IACV	7 7	11:31:49							-				
		IADN	IADN	7]7	11:32:20											
		IAEM	IAEM	7]7	11:31:50											
		IAFD	IAFD	7]7	11:29:29											
		IAGA	IAGA	7/7	11:31:20											
		IAHT	IAHT	7/7	11:32:00											
		IAJE	IAJE	7/7	11:31:40											
		IALM	IALM	7/7	11:31:15											
		IAOA	IAOA	7/7	11:30:39										NOW	
		<										>	<)>	
	Net Config RT Product	s Map View R	over Status	Sat Status												-
Content	Cluster Dal	re/Time	User	Category	Text											~
🛨 🧰 All	07.		Spider Serve		1.1.0000	M > fi>	ked an	nbiguit	ies av	ailable						
All Clusters All Products			Spider Serve		er Site < IAA											-
Query (Offlir		.01.2009 10:54:43	Spider Serve	er Network Serv	er Site < IAW	/A > fi:	xed ar	mbigui	ties av	ailable					>	_
For Help, press F1				Real-T	ime Processing	starte	Ч	P	emote	User	level	Admin	istrator NL	M Local t	ime : 11:32:	24
				, todi i		200100	-	J.S.		10001		- saind	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, jeocare		

- when it has to be right

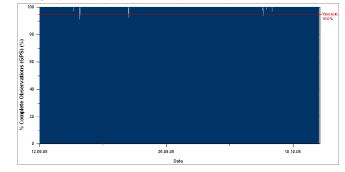
Ames File Availability


Site Overview | Quality Plots | File Summary | File Availability

File availability for the last 186 days


Date 🔶	DOY \$	Fi	le(s)'	•																			4	ŧ
13 Oct 2008	287	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
12 Oct 2008	286	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
11 Oct 2008	285	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	Т	m	n	0	р	q	r	s	t	u	v	w	x
10 Oct 2008	284	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	Т	m	n	0	р	q	r	s	t	u	v	w	x
9 Oct 2008	283	а	b	с	d	е	f	g	h	i	j	${\bf k}$	I.	m	n	0	р	q	r	s	t	u	v	w	x
8 Oct 2008	282	а	b	С	d	е	f	g	h	i	j	${\bf k}$	Т	m	n	0	р	q	r	s	t	u	v	w	x
7 Oct 2008	281	а	b	С	d	е	f	g	h	i	j	${\bf k}$	Т	m	n	0	р	q	r	s	t	u	v	w	x
6 Oct 2008	280	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
5 Oct 2008	279	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
4 Oct 2008	278	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
3 Oct 2008	277	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
2 Oct 2008	276	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
1 Oct 2008	275	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
30 Sep 2008	274	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
29 Sep 2008	273	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
28 Sep 2008	272	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
27 Sep 2008	271	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
26 Sep 2008	270	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
25 Sep 2008	269	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
24 Sep 2008	268	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
23 Sep 2008	267	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
22 Sep 2008	266	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
21 Sep 2008	265	а	b	С	d	е	f	g	h	i	j	\boldsymbol{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
20 Sep 2008	264	а	b	С	d	е	f	g	h	i	j	\mathbf{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
19 Sep 2008	263	а	b	С	d	е	f	g	h	i	j	k	I.	m	n	0	р	q	r	s	t	u	v	w	x
18 Sep 2008	262	а	b	С	d	е	f	g	h	i	j	\mathbf{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x
17 Sep 2008	261	а	b	С	d	е	f	g	h	i	j	\mathbf{k}	I.	m	n	0	р	q	r	s	t	u	v	w	x

Ames Quality Plots


Site Overview | Quality Plots | File Summary | File Availability

MP1 (GPS): RMS multipath error on L1 should be less than 0.5m

Percentage Complete Observations (GPS): More than 95% complete observations indicates normal operation.

Last Modified: 13/10/08 17:02:52 (UT-5.0)

This page was generated by Leica GNSS QC 2.1.0.18.

- when it has to be **right**

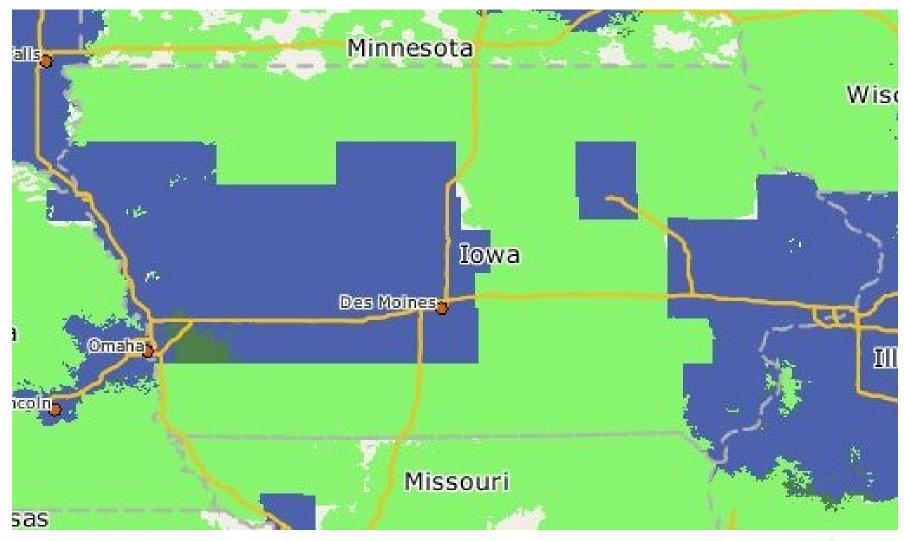
48

Preparing to Use the RTN Network

Need a rover that at a minimum, can:

- Connect to the internet via cell phone or cell modem
 - Network is independent of cell service provider, select the provider with best service in the area you work in!
- Send a NMEA message with account username and password, or has NTRIP functionality
- Can utilize RTCM 2.3, RTCM 3.x, CMR or CMR+ message formats

Strongly encourage all users to run the most recent firmware for the rover they are using.

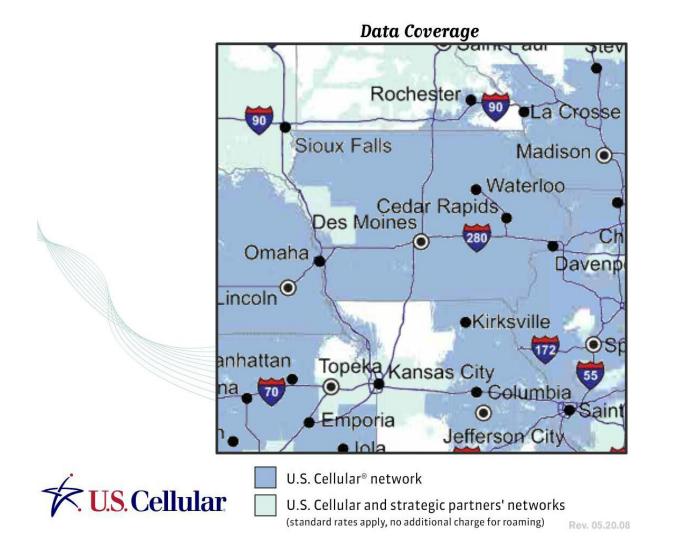

For construction machine control or project areas in cell service voids solutions exist to provide on-site radio broadcast of baseline and network solutions.

		rosoft Internet Explorer provided by ler?item=planFirst&action=viewPlanList&sortO		5&subTypeId=13&catId=405 🗸 🍕 🗙 Goog	e 2
File Edit View Favorites	Tools Help	 ☆ Bookmarks → Sa 28 blocked 			Settings-
😪 🏟 🐜 BroadbandAccess	Data Plans - Verizon Wireless			🔓 · 📾	- 🖶 - 🕞 Page - 🎯 Tools - 👌
	verizon wire		pañol About Us (Contact Us Store Locator 🖙 Cart Empty Search Location: Ames. IA Coverage Locator	
	Phones & Accessories	Plans Features & Downloads	Messaging	Business Support My Verizon	
	Select a Plan			Shopping Assistant	=
	Plans	Phones Features	Access	ories Checkout	
	Existing Customers	High Speed Access			
		BroadbandAccess • Show All Included Features			
	<u>e</u>	Monthly Allowance	Monthly Access	Per MB Rate After Allowance	
	Sign in to My Verizon		\$59.99	<mark>\$0.25</mark>	
	Coverage Maps	O <u>50 MB</u>	\$39.99	\$0.25	
	<u>Nationwide Map</u> <u>National Enhanced</u> <u>Services Map</u>	*BroadbandAccess speed claim based on speeds and coverage may vary. Other dat		MB FTP data files without compression. Actual ⁿ dial-up connections) at \$0.25 per minute.	
		Calling Plan Information			
		Additional Plan Information: Required Equipment BroadbandAccess-capable PC car	d		
				Inte	rnet 🔍 100% 👻

Verizon Coverage Map



Connect Plans - Wireless from	AT&T, formerly Cingula			rovided by Leica	Geosystems	✓ + ×	Google	_	
		ookmarks 👻 🔯 28 blo	icked 🎸 Check	🕶 🐔 AutoLink 👻	🗑 AutoFill 🔒 Senc		• 🔊 - 🖨 • 🕞 Page) S	
E DataConnect Plans - Wireless fr	rom AT&I, formerly C			Luci I				• 👾 10	
<i>€</i> at&t				re Coverage Vie		2	About Us My Account		
						Coverage a	ea: 50010 (AMES) Edit		
EXPLORE SHOP	SUPPORT				my Wireless Ac	count	Log in Sign up now		
Cell Phones & Devices	Cell Phone Plans GoPho	one Features R	ingtones & More	Accessories P	ackages & Deals		My Shopping Cart		
Prepaid Plans Data Plans BlackBerry Plans PDA/Smartphone Plans Laptop Connect Plans	Internet, and access you laptop to the Internet ov at all times in all places.	er the AT&T wireless	network. Service	AT&T has t	Data Coverage Map AT&T has the largest digital voice and data network in America.				
	Plan Name	Monthly Cost	Included Data	Additional data	International Data	Additional Features	() and a second		
	Data Connect	\$60.00	5 GB	0.00048/KB	0.0195/KB	View Details	Add to Cart		
Service provided by AT&T	s Site Map Other Wir	reless Sites Priva Vireless Home P	ersonal Busine YELLOWPAGES	ess Center Abou .COM			one Records Security		
All rights reserved. AT&T,	the AT&T logo and all oth		9 AT&T Intellectu ntained herein are		F&T Intellectual Pr	operty and/or AT	&T affiliated companies.		


Geosystems

AT & T Coverage Map

US Cellular Coverage Map

The Iowa RTN Real Time Products Schema

ADOT Network RTK (NTRI	P, Username & Password)
Port 10000	
RTCM 3.1 MAC (GNSS)	RTCM3_MAX
RTCM 3.1 iMAX (GNSS)	RTCM3_IMAX
RTCM 3.1 Nearest (GNSS)	RTCM3_NEAR
RTCM 2.3 iMAX (GPS)	RTCM2_IMAX
RTCM 2.3 Nearest (GPS)	RTCM2_NEAR
CMR Nearest (GPS)	CMR_NEAR
CMR+ Nearest (GPS)	CMRP_NEAR

IADOT	Baseline RTK (NTRIP, Username & Password)
Port 31	x00 – District number in place of *x*
	RTCM 3.1 – Single (GNSS) - RTCM3_IAxx
	Example: Port 31100 - Single Baselines for District 1
	RTCM3_IAAM – Single Baseline Correction for Ames
Port 23	3x00 - District number in place of "x"
	RTCM 2.3 - Single (GPS) - RTCM2_IAxx (Site Name)
	Example: Port 23100 - Single Baseline for District 1
	RTCM2_IAAM – Single Baseline Correction for Ames
Port 24	4x00 – District number in place of "x"
	CMR - Single (GPS) – CMR_IAxx (Site Name)
	Example: Port 24100 - Single Baseline for District 1
	CMR_IAAM - Single Baseline Correction for Ames
Port 25	5x00 – District number in place of "x"
	CMR+ - Single (GPS) - CMRP_IAxx (Site Name)
	Example: Port 25100 - Single Baseline for District 1
	CMRP_IAAM – Single Baseline Correction for Ames

IADOT Raw LB2 Data (NTRIP, Username & Password)								
Port 9999	RAW_IAxx (Site Name)							
Example:	RAW_IAAM - Raw Data Feed for Ames							

	P	
X		N

lowa GNSS Network Proxy Server

IP 165.206.203.10

INTER	P: 6	(with 407 mountpoints)
TCP/I	P: 85	
	P: 85 rts estimati	

IADOT Network	k RTK (TCP/IP, Us	ername & Password)
Port 11000	RTCM 3.1	iMAX (GPS)
Port 11001	RTCM 2.3	iMAX (GPS)
Port 11002	RTCM 2.3	Nearest (GPS)
Port 11003	CMR	Nearest (GPS)
Port 11004	CMR+	Nearest (GPS)

IADOT	Baseline RTK (TCP/IP, Username & Password
All base	eline products are GPS only
RTCM	2.3 Format:
	Port 23xyz – RTCM-ID-xyz
	Example:
	Ames - Port 23105 - District 1 Site No. 05
CMR F	ormat:
	Port 24xyz – CMR-ID-xyz
	Example:
	Ames - Port 24105 - District 1 Site No. 05
CMR+	Format:
	Port 25xyz – CMR+-ID-xyz
	Example:
	Ames – Port 25105 – District 1 Site No. 05

IADOT Port Schema Rev 3.0

LABEL

Iowa RTN: RTCM Identifiers

note: The first digit of the identifier indicates the District in which the the site resides, the second and third digits do not indicate any particular order or significance Filinsoidal

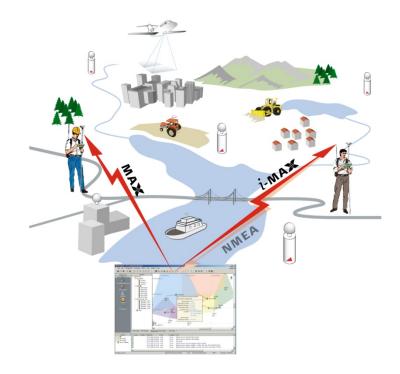
					Ellipsoidal		
SITE	RTCM ID	Constellations	Laititude	Longitude	HT.	Antenna 4 1	Cluster
IAAM	101	GPS & GLONASS	42" 00' 34.52725" N	93" 33' 35.03229" W	266.551	AX1202 GG	Northwest; Northeast; Southwest; Southeast
IADM	102	GPS & GLONASS	41" 39' 25.81755" N	93" 35' 52.63576" W	256,503	AX1202 GG	Southwest; Southeast
IAFD	103	GPS & GLONASS	42" 27' 19.57659" N	94" 11' 11.52094" W	324.382	AX1202 GG	Northwest
IAGC	104	GPS & GLONASS	42" 22' 09.41009" N	92" 46' 45.68544" W	275.305	AX1202 GG	Northeast
IAJE	105	GPS & GLONASS	42" 01' 16.06219" N	94" 22" 55.44009" W	303.933	AX1202 GG	Northwest; Southwest
IAML	106	GPS & GLONASS	41° 41' 13.66192" N	92" 33' 01.24839" W	271.266	AX1202 GG	Southeast
IAMT	107	GPS & GLONASS	42" 00' 20.82373" N	92" 55' 59.26626" W	279.595	AX1202 GG	Northeast; Southeast
IANT	108	GPS & GLONASS	41" 41' 04.15198" N	93° 04' 55.03440'' W	239.667	AX1202 GG	Southwest; Southeast
IATA	109	GPS & GLONASS	41" 58' 01.64651" N	92" 33' 05.03347" W	248.387	AX1202 GG	Southeast
AWS	110	GPS & GLONASS	42" 29' 03.00035" N	93* 32' 51.10994" W	347.985	AX1202 GG	Northwest; Northeast
IASW	201	GPS & GLONASS	43° 23' 06.97094" N	94" 18' 51.00407" W	338.467	AX1202 GG	Northwest; Northeast
IAAG	202	GPS & GLONASS	43" 04' 47.10437" N	94" 16' 01.15033" W	350.811	AX1202 GG	Northwest
IAGA	203	GPS & GLONASS	43" 06' 25.32956" N	93" 35' 59.30748" W	348.129	AX1202 GG	Northwest; Northeast
IACL	204	GPS & GLONASS	42" 43' 51.59357" N	93° 45' 04.85748" W	334.079	AX1202 GG	Northwest; Northeast
IAHT	205	GPS & GLONASS	43" 17' 02.35554" N	93° 22' 06.64421" W	345.498	AX1202 GG	Northwest; Northeast
IALA	206	GPS & GLONASS	42" 47' 55.01723" N	93° 21' 32.74025" W	359.424	AX1202 GG	Northeast
IAOE	207	GPS & GLONASS	43" 17' 04.67561" N	92" 50' 32.29195" W	332.408	AX1202 GG	Northeast
IAAL	208	GPS & GLONASS	42" 44' 49.37839" N	92" 47' 14.20479" W	292.136	AX1202 GG	Northeast
IANH	209	GPS & GLONASS	43" 03' 29.22811" N	92" 18' 16.44903" W	327.035	AX1202 GG	Northeast
IAWA	210	GPS & GLONASS	42" 28' 05.29411" N	92" 23' 27.20975" W	240.897	AX1202 GG	Northeast
IADE	211	GPS & GLONASS	43" 16' 15.80562" N	91" 49' 53.48415" W	317.54	AX1202 GG	Northeast
IAWU	212	GPS & GLONASS	42" 56' 09.67824" N	91" 48' 55.81897" W	325.848	AX1202 GG	Northeast
IAWK	213	GPS & GLONASS	43" 16' 40.00317" N	91" 28' 33.79617" W	372.451	AX1202 GG	Northeast
IAEL	214	GPS & GLONASS	42" 52' 40.45014" N	91° 21' 41.48879" W	300.032	AX1202 GG	Northeast
IARR	301	GPS & GLONASS	43" 26' 00.58453" N	96" 08' 55.47233" W	405.94	AX1202 GG	Northwest
IARV	302	GPS & GLONASS	43" 11' 51.94881" N	96" 18' 50.74836" W	360.201	AX1202 GG	Northwest
IAAK	303	GPS & GLONASS	42" 49' 21.83683" N	96" 33' 48.53255" W	330.493	AX1202 GG	Northwest
IASX	304	GPS & GLONASS	42" 33' 00.13894" N	96* 20' 54.47594* W	329.126	AX1202 GG	Northwest
IASN	305	GPS & GLONASS	42" 14' 20.40104" N	96° 13' 52.00458" W	308.258	AX1202 GG	Northwest
IAOA	306	GPS & GLONASS	42" 01' 39.25624" N	96° 06' 28.67084" W	301.587	AX1202 GG	Northwest; Southwest
IADN	307	GPS & GLONASS	41° 59' 50.56276" N	95* 22' 32.52942* W	351.18	AX1202 GG	Northwest; Southwest
IACA	308	GPS & GLONASS	42" 04' 40.00999" N	94° 54' 40.40182" W	366.026	AX1202 GG	Northwest; Southwest
IACV	309	GPS & GLONASS	42" 28' 52.77140" N	95° 46' 24.69055" W	325.533	AX1202 GG	Northwest
IASC	310	GPS & GLONASS	42" 25' 16.43287" N	95° 01' 05.44078° W	373.672	AX1202 GG	Northwest
IASM	311	GPS & GLONASS	42" 38' 53.58611" N	95* 12' 58.68816* W	418.883	AX1202 GG	Northwest
IAPS	312	GPS & GLONASS	42" 44' 16.91837" N	94° 40' 45.28575" W	353.432	AX1202 GG	Northwest
IACK	313	GPS & GLONASS	42" 46' 06.07968" N	95° 32' 31.86230" W	362.399	AX1202 GG	Northwest
IALM	314	GPS & GLONASS	42" 47' 53.00372" N	96° 08' 55.35723" W	365.925	AX1202 GG	Northwest
IASP	315	GPS & GLONASS	43" 07' 41.67618" N	95° 09' 41.82069" W	381.868	AX1202 GG	Northwest
IAEM	316	GPS & GLONASS	43" 06' 24.79741" N	94° 41' 40.34443° W	345.559	AX1202 GG	Northwest
IAAS	317	GPS & GLONASS	43" 18' 20.16910" N	95° 46' 44.57596" W	430.604	AX1202 GG	Northwest
IASL	318	GPS & GLONASS	43° 25' 15.18234" N	95° 08' 09.07824" W	414.6	AX1202 GG	Northwest

Page 1

- when it has to be **right**

56

Iowa RTN: RTCM Identifiers


note: The first digit of the identifier indicates the District in which the the site resides, the second and third digits do not indicate any particular order or significance

		the second and third digits do not indicate any particular order or significance					
					Ellipsoidal		
SITE	RTCM ID	Constellations	Laititude	Longitude	HT.	Antenna	Cluster
IAMV	401	GPS & GLONASS	41" 34' 15.68376" N	95" 51' 30.05970" W	291.101	AX1202 GG	Southwest
IAAV	402	GPS & GLONASS	41" 29' 12.12442" N	95° 20' 14.52886" W	325.656	AX1202 GG	Southwest
IAAD	403	GPS & GLONASS	41" 29' 45.81183" N	94" 38' 29.38602" W	426,103	AX1202 GG	Southwest
IADS	404	GPS & GLONASS	41" 33' 05.29268" N	94° 00' 28,48163" W	247.44	AX1202 GG	Southwest
IACB	405	GPS & GLONASS	41" 13' 26.38336" N	95" 51' 11.59397" W	277.92	AX1202 GG	Southwest
IAAT	406	GPS & GLONASS	41" 24' 19.52320" N	94° 59' 16.80676" W	343.715	AX1202 GG	Southwest
IARO	407	GPS & GLONASS	41" 01' 19.74860" N	95" 14' 00.58962" W	291.661	AX1202 GG	Southwest
IACO	408	GPS & GLONASS	41" 00' 51,70529" N	94° 44' 14.35854" W	368.957	AX1202 GG	Southwest
IACR	409	GPS & GLONASS	41" 03' 11.11780" N	94" 21' 05.29491" W	366.3	AX1202 GG	Southwest
IASD	410	GPS & GLONASS	40" 44' 58,49898" N	95* 38' 10.30847" W	303.07	AX1202 GG	Southwest
IABE	411	GPS & GLONASS	40" 39' 56.13120" N	94" 43' 17.59069" W	315.699	AX1202 GG	Southwest
IAMA	412	GPS & GLONASS	40" 42' 30,43616" N	94" 15'06.39104" W	347.841	AX1202 GG	Southwest
IAMD	501	GPS & GLONASS	41" 22' 16.79963" N	93° 44' 38.84771" W	232.961	AX1202 GG	Southwest; Southeast
IAOS	502	GPS & GLONASS	41" 01' 40.27417" N	93° 47' 08.43810° W	324.585	AX1202 GG	Southwest
IALN	503	GPS & GLONASS	40" 43' 44.48380" N	93° 45' 42.86096" W	318.566	AX1202 GG	Southwest
IACH	504	GPS & GLONASS	40" 58' 57,52634" N	93" 18' 25.39174" W	272.271	AX1202 GG	Southwest: Southeast
IAKN	505	GPS & GLONASS	41" 17' 58.28725" N	93° 06' 03.40437" W	256.368	AX1202 GG	Southwest: Southeast
ACE	506	GPS & GLONASS	40" 42' 07.27150" N	92° 52' 12.62620" W	286,795	AX1202 GG	Southwest: Southeast
IAOK	507	GPS & GLONASS	41" 17' 35.36889" N	92" 41' 04.79153" W	208.701	AX1202 GG	Southeast
IABL	508	GPS & GLONASS	40" 44' 26.73777" N	92" 25' 51.03652" W	241.003	AX1202 GG	Southeast
IASI	509	GPS & GLONASS	41" 19'03.32257" N	92" 12' 24,14627" W	199.162	AX1202 GG	Southeast
IAWN	510	GPS & GLONASS	41" 18' 34,11968" N	91° 40' 44,74869" W	206.489	AX1202 GG	Southeast
IAWO	511	GPS & GLONASS	41" 10' 30.97232" N	91" 11' 29.06826" W	150.936	AX1202 GG	Southeast
IAWB	512	GPS & GLONASS	40" 50' 00.48614" N	91" 12' 33.79299" W	187.976	AX1202 GG	Southeast
IADO	513	GPS & GLONASS	40" 38' 48.98297" N	91" 33' 57.38978" W	188.678	AX1202 GG	Southeast
IAAA	514	GPS & GLONASS	41" 00' 49.06467" N	92" 48' 45.62838" W	268.131	AX1202 GG	Southeast
IAIN	601	GPS & GLONASS	42" 26' 39.02847" N	91° 53' 00.91974" W	272.06	AX1202 GG	Northeast
IANW	602	GPS & GLONASS	41" 57' 41.91514" N	91* 58' 07.31635" W	245.296	AX1202 GG	Northeast: Southeast
IAWM	603	GPS & GLONASS	41" 42' 09.45049" N	92° 00' 22.02592" W	244.089	AX1202 GG	Southeast
IACI	604	GPS & GLONASS	41" 42' 38.03093" N	91° 36' 33.23790" W	222,285	AX1202 GG	Southeast
IAAN	605	GPS & GLONASS	42" 06' 12.96702" N	91" 15' 24, 18956" W	228,121	AX1202 GG	Northeast: Southeast
IATI	606	GPS & GLONASS	41" 38' 33.88902" N	91" 06' 37.55668" W	185.887	AX1202 GG	Southeast
IADA	607	GPS & GLONASS	41" 36' 36.18235" N	90° 37' 49.54861" W	201.692	AX1202 GG	Southeast
IAMQ	608	GPS & GLONASS	42" 04' 25.20052" N	90° 38' 42.15399" W	188.66	AX1202 GG	Northeast: Southeast
IADU	609	GPS & GLONASS	42" 27' 21.31702" N	90° 40' 25.97318" W	217	AX1202 GG	Northeast
IAMR	610	GPS & GLONASS	42" 29' 04.33678" N	91" 28' 22.77785" W	269.074	AX1202 GG	Northeast
IASA	611	GPS & GLONASS	42" 05' 00.09625" N	90" 11' 55.17784" W	160.743	AX1202 GG	Northeast: Southeast

Page 2

Thank you all very much!

References

Euler, H-J., Keenan, C.R., Zebhauser, B.E. and Wuebbena, G. (2001) "Study of a Simplified Approach in Utilizing Information from Permanent Reference Station Arrays", *ION GPS 2001*, September 11-14, 2001, Salt Lake City, UT.

Euler, H-J., Zebhauser, B.E., Townsend, B.R. and Wuebbena, G. (2002) "Comparison of Different Proposals for Reference Station Network Information Distribution Formats", *ION GPS 2002*, September 24-27, 2002, Portland, OR.

Euler, H-J. and Zebhauser, B.E. (2003) "The Use of Standardized Network RTK Messages in Rover Applications for Surveying", *ION NTM 2003*, January 22-24, 2003, Anaheim, CA.

Euler, H-J., Seeber, S., Zelzer, O., Takac, F., and Zebhauser, B.E. (2004) "Improvement of Positioning Performance Using Standardized Network RTK Messages", *ION NTM 2004*, January 26-28, 2004, San Diego, CA.

