

DISTRICT
MATERIALS STAFF
DISTRICT 1 MATERIALS PERSONNEL
DISTRICT 2 MATERIALS OFFICE

NAME	AREAS OF RESPONSIBILITY	LOCATION	WORK PHONE	$\begin{aligned} & \text { CELL } \\ & \text { PHONE } \end{aligned}$	FAX NUMBER	Summer Work Hours	Email Address
Keith Norris	Materials Engineer	Mason City	641-423-7676	641-425-2229	641-424-2203	7:45-4:30	keith.norris@dot.iowa.gov
Vacant	Secretary / TTCP Administration	Mason City	641-423-7676		641-424-2203	7:30-4:30	
Kelli Arnburg	Lead Technician / Assistant to Engineer	Mason City	641-423-7676	641-430-2096	641-424-2203	8:00-4:30	kelli.arnburg@dot.iowa.gov
Dale Harris	District Lab Chief	Mason City	641-423-7676		641-424-2203	7:30-4:00	dale.harris@dot.iowa.gov
Scott Boyle	Assistant to Lab Chief / Profilometer	Mason City	641-423-7676		641-424-2203	7:30-4:00	scott.boyle@dot.iowa.gov
Jon Kleven	Field HMA Technician	Mason City	641-423-7676	641-430-2097	641-424-2203	7:15-3:45	jon.kleven@dot.iowa.gov
Dane Bjugan	Field PCC Technician	Mason City	641-423-7676	641-430-2098	641-424-2203	7:15-3:45	dane.bjugan@dot.iowa.gov
Nancy Paulson	Fabrication / Precast / Structural Steel / Audits	Mason City	641-423-7676	641-430-2184	641-424-2203	8:00-5:00	nancy.paulson@dot.iowa.gov
Gene Welter	Waterloo Materials Area Inspector	Waterloo	319-233-4689	319-231-2297	319-232-5234	7:00-3:30	eugene.welter@dot.iowa.gov
Jason Ryan	Decorah Materials Area Inspector	Decorah	563-382-3633	563-380-5167	563-382-6264	7:00-3:30	jason.ryan@dot.iowa.gov
Steve Mariner	Mason City Materials Area Inspector	Mason City	641-423-7676	641-430-2329	641-424-2203	7:15-3:45	steven.mariner@dot.iowa.gov
	Clarion Lab	Clarion	515-532-2097	641-430-2329	515-532-2097	7:15-3:45	steven.mariner@dot.iowa.gov

AREA INSPECTOR COUNTIES
Steve Mariner Cerro Gordo, Hancock, Humboldt, Kossuth, Winnebago, Worth and Wright County
Black Hawk, Bremer, Butler, South of US 18 \& IA 24 in Chickasaw, Floyd and Franklin County
Allamakee, North of US 18 \& IA 24 in Chickasaw, Clayton, Fayette, Howard, Mitchell, and Winneshiek County

[^0]Jason Ryan

NAME \quad JOB RESPONSIBILITY \quad WORK PHONE

CELL PHONE
Area Materials Coordinator County Assignments
Name:
DISTRICT 4 MATERIALS OFFICE

Area Inspection
Harrison, Pottawattamie, Mills, Page \& Fremont Counties, Nebraska and Kansas
Shelby, Audubon, Guthrie, Dallas, Cass, Adair, Madison, Montgomery, Adams,
Union, Taylor, Ringgold, Page, Pottawattamie Counties and Missouri

Fabrication Inspection

Woener Wire Works, American Fence, Valmont, Coreslab Structures, American Concrete Products, Cretex, and Oden Enterprises
 Contech, Metal Culverts, and J\&J Drainage Products

 712-243-5302 712-366-0408
DISTRICT 5 MATERIALS OFFICE

Phone: 641-472-3103
Fax: 641-469-3427

Name	Job Responsibility	Work Phone	Cell Phone
Jim Webb	Materials Engineer	$641-469-4045$	$641-919-8551$
Clint Ammenhauser	Area Materials Coordinator, Chariton	$641-472-3103$	$641-344-9810$
Cathy Aplara	Administration/Auditing Techncian/PCC Assistant	$641-469-4034$	$641-919-2241$
Helen Bailey	Area Materials Coordinator, West Burlington	$319-752-0561$	$319-759-5408$
Ellen Davidson	Secretary/Training Coordinator	$641-472-3103$	
Garry Dickey	PCC Technician/Assurance	$641-469-4032$	$641-919-2248$
Shane Fetters	Lab Chief	$641-469-4044$	$641-919-2256$
Scott Gettings	HMA Technician/Assurance	$641-469-4042$	$641-919-2251$
Joe Hovey	HMA Lab Assistant/PCC Assistant (Apr-Nov)	$641-469-4035$	$641-919-2253$
Jon Mason	Special Investigations/Profilometer	$641-469-4043$	$641-919-2254$
Lynn Reese	Assistant to Materials Engineer	$641-469-4036$	$641-919-2257$
Derek Sellars	Area Materials Coordinator, Oskaloosa	$641-673-5109$	$641-660-3578$

Area Materials Coordinator County Assignments
Helen Bailey:
Derek Sellars:
Lynn Reese:
Des Monies, Henry, Lee, Louisa, Illinois, NE Missouri
Keokuk, Mahaska, Marion, Monroe, Wapello, Washington
Clint Ammenhauser:
Davis, Jefferson, Van Buren
Appanoose, Clarke, Decatur, Lucas, Warren, Wayne, N Missouri

DISTRICT 6 MATERIALS OFFICE
 5455 Kirkwood Blvd. SW, Cedar Rapids, IA 52404
 Phone: 319-366-0446 Lab 319-366-1614 Fax: 319-730-1565

Name	Job Responsibility	Work Phone	Direct Line	Cell Phone
Roger Boulet	Materials Engineer	$319-366-0446$	$730-1551$	$319-350-2470$
Terry Dunlay	Transportation Engineer	$319-366-0446$	$730-1554$	$319-560-2225$
Mary Godwin	Asst. to Engineer	$563-391-5230$		$563-349-0968$
Mardel Huebner	Materials Fabricator I	$563-391-5230$		$563-349-2359$
Hayder Salehoglu	ACC Lab Chief	$319-366-1614$	$730-1515$	$319-560-3846$
Kathy Miller	PCC Technician	$319-366-0446$	$730-1556$	$319-560-3877$
Mark Dutra	ACC Technician	$319-366-0446$	$730-1553$	$319-560-2783$
Shane Garrity	Area Inspector	$563-875-2659$		$563-920-5284$
Dave Staab	Auditor/Certification Program	$319-366-0446$	$730-1557$	
Kirby Salisbury	Area Inspector	$319-366-0446$	$730-1519$	$319-560-3889$
Joe Burns	Assurance/Nuclear	$319-366-0446$	$730-1555$	$319-330-5668$
Lynn Gemmer	Secretary	$319-366-0446$	$730-1550$	
Jay Schrock	Transportation Worker/Area Inspector	$319-366-0446$		$319-560-4428$

[^1]I.M. 101

Review of Materials
Used in Const. \&
Maint. Projects

REVIEW OF MATERIALS USED IN CONSTRUCTION \& MAINTENANCE PROJECTS

PURPOSE

The purpose of this memorandum is to provide guidance to the District Materials Offices and Project Engineers for reviewing documentation of materials accepted into construction and maintenance projects. These reviews are intended to determine compliance with the Contract Documents, prescribed methods of acceptance, sampling, testing and the requirements of Federal Regulation 23 CFR 637. The results of the District Materials Engineer's (DME's) final review of materials used provides the basis of certification of conformance with approved plans and Specifications by the Highway Division to the FHWA.

OBJECTIVES

To provide the following:

- Guidelines for identifying projects that require materials auditing
- Guidelines for small quantities of materials
- Guidance for maintaining and disposition of project materials files
- Description of the review process
- Identification of forms used in the materials review
- Guidelines for documenting non-compliance issues

PROJECTS REQUIRING A FINAL REVIEW BY DME

The District Materials Engineer will conduct a final review of materials used in all Interstate-, and Primary construction and maintenance projects.

The District Materials Engineer will conduct a final review of materials used in construction and maintenance projects on Parks and Institutional Roads and roads for other State agencies only when Iowa DOT Standard Specifications are used for the project.

The level of review performed by the District Materials Engineer for local agency projects is determined by the type of funding and location of the project. The Administering Office (either Systems Planning or District Local Systems), in consultation with the District Materials Engineer, may either require a materials review of all local agency Federal-aid projects or review only selected local agency Federal-aid projects using the systems approach described below.

SYSTEM APPROACH TO FINAL MATERIALS REVIEW

A minimum of one federal aid project per local agency will be reviewed per year. The Administering Office, in consultation with the District Materials Engineer will determine if more than one project should be reviewed in any particular local agency due to issues found during a project's final review.

Ideally, the construction final records/quantity review and District Materials Engineer's final materials review should be conducted on the same project.

The District Materials Engineers will report annually to the Construction and Materials Engineer their findings on the final reviews performed on local agency projects. Findings will include shortages or acceptance of materials in manners that vary from IM 204, IM 204 Supplemental or the contract documents.

MATERIALS DOCUMENTATION NOT REQUIRING REVIEW

Certain materials incorporated into a project will not be included in the materials review when the quantities involved are below those listed in Appendix A. Typically, these are low-risk items that will not have a significant impact on the value, performance or longevity of the overall project. The effort needed to account for these quantities exceeds the purpose of the review.

The normal method of acceptance by the Project Engineer is not to vary from those described in IM 204 or other relevant IMs.

Appendix A provides a guide in determining what materials and the maximum quantities that may be waived from the final materials review.

MAINTENANCE \& DISPOSITION OF PROJECT FILES

For active projects that require a final materials review, files with all materials documentation are to be maintained by both the Project Engineer and District Materials Engineer.

Project \& District Materials Files: During the project, these files are to be kept current with all materials documentation needed for materials acceptance.

During the District Materials Engineer's final materials review, copies of materials documentation may need to be added to the District Materials file from the Project Engineer's file.

Upon completion of the District Materials Engineer's final materials review, the District Materials file is delivered to the Office of Construction and Materials. Once Central Materials Administration has completed either certification to FHWA and/or billing to counties/cities, the Project file is sent to Electronic Records Management System (ERMS) Support Team.

GUIDELINES FOR PERFORMING THE MATERIALS REVIEW

The District Materials Engineer compares the required method of acceptance as described in IM 204, IM 204 Supplemental and the contract documents with information on the material review sheets prepared by the Project Engineer.

Combining more than one project onto one set of material review sheets may be allowed under the following conditions:

- Tied under one contract
- Similar types of work
- Materials or mixtures furnished to the projects are from a common plant or source, making it difficult to separate quantities to each individual project (i.e., HMA, PCC or aggregates).

NOTE: Projects should be maintained in separate files with a copy of the combined project review sheets placed in each project file.

The material review sheets are found on the Materials Office website http://www.iowadot.gov/Construction_Materials/materialsforms/auditforms.xls. They provide a format and guidance in summarizing the materials documentation for various types of work. These sheets are completed by the Project Engineer and submitted to the District Materials Engineer.

The Miscellaneous Materials sheet is used for documenting items that are not identified on the sheets representing specific types of work. The Miscellaneous Materials sheet may be used to supplement any of the review sheets.

Documentation on the review sheets should normally be prepared using the following form for the various methods of acceptance:

Approved Brand/Source	Identify only the brand or source of the material with no specific quantity.
Approved Brand/Source and/or Batch	Identify only the brand or source of the material and the lot or batch used with no specific quantity.
Certified Materials	Identify the quantity of the material certified by the supplier (except materials represented on a plant report).
Plant Reports	Identify the quantity of mixture required and the quantity represented on plant reports.
Tests	Identify the required number of tests and the actual tests reported to the project.
Fabrication Reports	Identify the number of units represented by fabrication reports (i.e., number of beams, Ibs., etc.).

All materials are to be documented on the review sheet except materials considered as Small Quantities, (Appendix A). Small Quantity items need not be documented on the review sheets.

The review of a material item may be considered acceptable if at least 98% of the required documentation for the material used is accounted for in the project file. The agency person responsible for preparing the review quantities, in each category, shall date and sign the signature line representing the Project Engineer's Office.

NONCOMPLIANT TESTS

The Project Engineer furnishes the summary Noncompliant Tests or Measurements of Material Incorporated into the Project. The Project Engineer attaches this summary to the Final Payment Form \#830436.

When acceptance of noncompliant materials is made by a means other than using established price adjustment schedules, the basis of acceptance requires an explanation by the District Materials Engineer.

Deviations from the prescribed sampling and testing frequency or the basis of acceptance as described in IM 204, also require an explanation.

Explanations for issues described above should be addressed to Materials Administration with copies to the Project Engineer and the project file.

GUIDELINES FOR WAIVING MATERIAL FROM THE FINAL MATERIALS REVIEW

		MAXIMUM
MATERIAL	UNITS	QUANTITY BY ITEM
Aggregate	Tons	200
Asphalt, Cutback	Gal.	100
Asphalt, Emulsified	Gal.	100
Asphalt, Hot Mix	Tons	50
Aprons: RCP or CMP	Ea.	4
Base Repair: HMA or PCC	S.Y.	100
Conduit	Ft.	50
Culvert Pipe: RCP, CMP or PE	Ft.	30
Delineators	Ea.	10
Delineator Posts	Ea.	10
Dowel Baskets, Epoxy Coated	Ea.	10
Fabric Engineering, Erosion Control	S.Y.	100
Fabric Engineering, Silt Fence	Ft.	100
Iron Casting, Manhole Covers, Etc.	Ea.	1
Joint Filler, Preformed	Ft.	100
Lighting Material, Ground Rods	Ea.	2
Lighting Material, Wire/Cable	Ft.	250
Paint, Bridge	Sq.Ft.	250
Pavement	S.Y.	100
Pavement Markings	Sta.	25
Pipe, Rodent Guard for CMP	Ea.	5
Pipe, Rodent Guard for P.E. Pipe	Ea.	5
Seed, Fertilizer/Mulch	Acres	1
Signing Materials, Finished Sign	Sq. Ft.	20
Signing Materials, Wood Posts	Ft.	50
Steel Reinforcement, Epoxy Coated	Lbs.	500
Steel Reinforcement, Uncoated	Lbs.	500
Structural Concrete	Ft.	25
Subdrain, CMP		250

Subdrain, CMP Outlet	Ea.	5
Subdrain, P.E.	Ft.	250
Subdrain, P.E. Outlet	Ea.	

I.M. 103

Inspection Services Provided to Other Agencies

INSPECTION SERVICES PROVIDED TO COUNTIES, CITIES, AND OTHER STATE AGENCIES

INTRODUCTION

The purpose of this Instructional Memorandum is to outline the procedures to be followed for materials quality assurance inspection and other materials associated services performed for counties, cities, and other state agencies. This is in accordance with the Code of Federal Regulations, Code of lowa, the lowa Administrative Code, and the lowa Department of Transportation Policies and Procedures Manual.

The level and type of review required depends on the category to which the project belongs, as defined below:

Category:

1. Federally Funded County and City Road, Street, and Bridge Projects.

- Surface Transportation Program (STP-S, STP-U, STP-A, CS-TS-STP-U, STP-S-TS)
- Highway Demonstration Program (HDP, DE, DPI, DE-RP, DPR)
- Highway Bridge Reconstruction and Rehabilitation Program (BROS, BHOS, BRM, BHM, BRS, BHS, BR-RP)
- Innovative Bridge Research and Construction Program (IBRC)
- National Historic Covered Bridge Preservation Program (HCBP)
- Highway Safety Improvement Program (HSIP, HSIPX)
- High Risk Rural Roads (HRRR)
- Emergency Relief (ER)
- Economic Stimulus / Recovery Act (ESFM, ESFTA, ESIM, ESIMX, ESL, ESP, ESR)
- Transportation Community System Preservation Program (TCSP)

2. Federally Funded County and City Non-highway Projects.

- Transportation Enhancement (STP-E, STP-ES, STP-ES-E)
- Federal Recreational Trails (NRT)
- Safe Routes to School (SRTS, SRTS-S, SRTS-U)
- National Scenic Byways (SB-IA)
- Transportation Enhancement Earmarks (EDP)
- Transportation Alternatives (TAP-T, TAP-U, TAP-R)

3. State-assisted projects or cooperative projects involving through traffic lanes on primary roads, including turn lanes and other work within the primary right-of-way that will be owned and maintained by the Department.

- U-STEP/C-STEP (UST, CST)
- RISE (RC, RM, RFM, RP, RPX, RCX, RFMX, RP-M)
- Traffic Safety Improvement Program (CS-TSF, FM-TSF)
- Parks and Institutional Roads and other State agencies (SP, BR, DHS, DC, SFB, SCG)

4. Farm-to-Market, Local, or State-assisted projects on county roads or city streets that do not involve any work on primary highway through traffic lanes or turn lanes that will be owned and maintained by the Department.

- Farm-to-Market (FM, LFM)
- RISE (RC, RCX, RM, RMX, RFM, RFMX, RP-M)
- Traffic Safety Improvement Program (FM-TSF, L-TSF, CS-TSF)
- State Bridge (SBRC, SBRM, SBRFM)
- State Recreational Trails (RT)
- Curb Ramp Program (ADA)
- 100\% Locally funded city or county projects let at the Department (L, CS). Note: 100% locally funded city or county projects that are let locally have no Department involvement in any aspect of the project development or construction.

QUALITY ASSURANCE PROCEDURES

Project materials quality assurance inspection services and other materials associated services provided to counties, cities, and other state agencies will be billed to them. For Category 2-4 projects, a written request outlining the services requested must be submitted from the contracting authority to the DME. A copy will be forwarded to the Office of Construction and Materials. For Category 1 projects no written request is required.
A. Invoicing for Materials Inspection.

The Office of Construction and Materials will invoice counties and cities as follows:

1. Invoicing for project inspection costs will be based on a cost per test basis, which is calculated at the beginning of the calendar year using a running average of the previous four years' cost and work experience. These rates shall apply to inspection performed during that calendar year. Invoicing for requested investigations or surveys for location, quantity, or quality of material resources will be based on actual total time, mileage and expense costs incurred in the investigation or survey.
2. For Federal Aid and County Farm to Market and qualifying State-Assisted Projects, the invoices will be prepared and forwarded to the Office of Finance for all inspection performed upon processing of the project final estimates.
3. For other projects, except when other arrangements are made, an invoice will be prepared at the end of the calendar year and forwarded to the Office of Finance invoices for all inspection performed to date on the basis of contract quantities. If a county or city wishes to be billed at the completion of a project they must notify the District Materials Engineer of the project completion and request a billing.
4. When source inspection is performed by other agencies or by consultant, the local agency will be invoiced the actual costs incurred.
B. Equipment Calibration

The DME will assist the local agency in witnessing the calibration of PCC and HMA equipment for Category 1-3 Projects and Category 4 projects (FM projects only).
C. Source Inspection

The DME and the Office of Construction and Materials will assist the local agency with the
source inspection listed in IM 204 as well as aggregate sources. When required or requested the Office of Construction and Materials will arrange for inspection of materials furnished from outside the State of lowa in areas where normal routine inspection service is available either by lowa DOT personnel, other agencies, or consulting firms.

1. For Category 1 Projects, the source inspection requirements of IM 205 and IM 204 will be followed.
2. For Category 2 Projects, the DME, when requested, will perform the source inspection tasks in IM 204.
3. For Category 3 Projects except FM, the DME, when requested, will perform the source inspection tasks in IM 204.
4. For Category 4 Projects (All Projects), the DME, when requested, will perform the source inspection tasks in IM 204.
D. Project Inspection
5. For Category 1 Projects, the inspection requirements of IM 205 and IM 204 will be followed.
6. For Category 2 Projects, the DME, when requested, will perform the DME tasks in IM 204.
7. For Category 3 Projects except FM, the DME, when requested, will perform the DME tasks in IM 204.
8. For Category 4 Projects (FM projects only), the DME, when requested, will perform limited testing.
a) HMA mix design paper review or evaluation of test strip results.
b) Verification testing of un-compacted mixture will be done the first day and then one test per week maximum.
c) Verification testing of asphalt binder will be done the first day and then one test per week maximum.
d) Verification testing of compacted mixture will be done the first day and then one test per week maximum.
e) Verification testing of smoothness will be done at the rate in IM 204.

CERTIFICATION PROCEDURES

Certification by the DME on form 830436 or 640003 will be based on the category. The form 830436 has qualifying statements that are to be used by the DME depending on the level of audit. The Office of Construction and Materials does not send a certification to the FHWA on local agency projects.
A. Certification

1. For Category 1 Projects, the local agency will certify the work was completed in substantial compliance with the plans and specifications, including the materials incorporated.
The DME will sign the form 830436 with the qualifying statement marked if appropriate based on the level of audit performed.
2. For Category 2 Projects, the local agency will certify the work was completed in substantial compliance with the plans, specifications, and agreements (when applicable).

If required, the DME will sign the form 830436 with the qualifying statement marked if appropriate based on the level of audit performed.
3. For Category 3 Projects, the local agency will certify the work was completed in substantial compliance with the plans and specifications, including the materials incorporated.
The DME may be required to sign form 640003. The DME may designate specific materials or contract items that have been reviewed.
4. For Category 4 Projects that are state assisted, the local agency will certify the work was completed in substantial compliance with the plans, specifications, and agreements (when applicable).
No DME signature is required.

GENERAL REWRITE - PLEASE READ CAREFULLY.

IOWA DOT INSPECTION COSTS

Function Description	No. of Tests in 2013	2014 Avg. Cost Per Test
Aggregate		
853 Certified Aggregate	4,941	154.90
856 Freeze - Thaw Tests	1,081	86.51
857 Abrasion Test	1,788	54.56
858 Coarse Aggregate Specific Gravity \& Absorption	1,814	26.71
859 Fine Aggregate Specific Gravity \& Absorption	532	47.34
860 Sieve Analysis \& Plasticity Index	1,421	127.21
861 Deleterious Material Determination	2,016	8.36
862 AC Aggregate Specific Gravity \& Absorption	235	185.26
863 Aggregate Miscellaneous	339	141.70
Asphalt Materials		
841 Materials Lab QMA	148	276.83
865 AC Binder Analysis Complete	244	229.23
866 DSR or Penetration or Viscosity	535	89.19
867 Liquid Asphalt Complete Analysis	28	383.69
868 Liquid Asphalt Partial Analysis	146	89.23
870 Asphalt Type Joint	51	207.76
872 Asphalt Mix Lab Density	1,708	77.69
873 Asphalt Mix Max. Density	1,592	52.89
874 Asphalt Mix Extraction \& Gradation	168	702.55
876 Asphalt Mix Special	31	1,022.86
877 Asphalt Mix Design	0	1,271.22
878 Asphalt Plant Calibration \& Inspection	16	1,582.51
879 Ignition Oven	201	68.51
Cement		
882 Physical Cement Test	294	332.58
883 Fine Aggregate Mortar Strength	32	109.74
884 Lime - Fly Ash Physical Test	99	261.28
885 Miscellaneous	14	380.21
Chemical		
887 Concrete - Soil Chloride Determination	0	28.09
890 Lime - Fly Ash	115	107.87
891 Portland Cement	290	413.90
892 Calcium \& Sodium Chloride \& Deicers	4	300.13
893 Aggregate - Aluminum Oxide	1,463	68.31
894 Concrete Admixtures	354	76.48
895 Air Entraining Admixture	216	90.70

Function Description

Concrete

840 Flowable Mortar
76.37

900 Coring, Strength \& Air 242
$\begin{array}{lr}901 \text { Concrete Admixture Physical Test } \\ 902 \text { Concrete Durability } & 50 \\ 0\end{array}$
903 Concrete Coring 330
904 Precast Bridge Beams 880
97.98
29.39

4,263.67
165.82
173.60
$\begin{array}{lr}905 \text { Precast Piling } & 72 \\ 906 \text { Miscellaneous Precast Units } & 5\end{array}$
907 Concrete \& Clay Pipe 223
908 Concrete Coating \& Seal
909 Concrete Miscellaneous 8
910 Concrete Plant Calibration - Inspection
Field Testing
898 Asbestos S \& T
922 Nuclear Test Materials \& Construction
923 Profile Measurement (Bridge Decks) 23
Lighting \& Signal
930 Lighting Materials 143
931 Standard Light Poles 55
932 Tower Light Poles 23
Metals
934 Calibration of Tension \& Compression Testers 17
936 Physical Test Structural Steel- Aluminum 15
937 Reinforcing Steel 246
938 Prestress Cables 75
939 Casting
940 Guardrail Cable, Rails \& ACC
941 Calibration of Beam Breakers
942 Fence Material
943 Weld Tests Operator
6

945 Fasteners High Strength 575
946 Fasteners Miscellaneous 581
947 Steel \& Aluminum Fabrication 4,696
951 Radiograph Exams 7
952 Miscellaneous Metals Testing 174
48.94
227.94
164.36
426.76
942.87
282.70
48.30
447.92

1,231.33
313.61
15.93
35.21
434.74
735.47
266.91
261.70
810.65
312.12
254.58
142.34
198.88
47.89
38.21
114.78
181.89
82.36

Function Description	No. of Tests in 2013	2014 Avg. Cost Per Test
Pavement Evaluation		
955 Pavement Ride Testing	3,488	35.86
956 Pavement Friction Testing	6,639	44.65
957 Pavement Deflection	731	153.74
959 Test Equipment Calibrations	1	2,741.66
961 California Profilometer (Paving)	462	325.76
Physical Tests		
968 Neoprene Bearing Pad	14	1,443.23
969 Neoprene Joint Seals	20	118.97
972 Curing Compounds Non-AC	66	643.15
Physico-Chemical		
978 Paint \& Ingredients	33	170.77
979 Protective Coating Tests	562	31.44
980 Mixing Water	38	66.59
982 Preform \& Form Joint Filler	0	0.00
983 Carbon Analysis of Soil	29	24.68
985 Fabrics	0	0.00
Soils		
990 Plasticity Index	262	40.75
991 Proctor Tests	87	55.03
992 Mechanical Analysis	262	12.72
993 Triaxial - UU	75	107.42
994 Consolidation	49	108.57
995 Triaxial - CU	72	160.55
996 Soil Cores	95	10.49

I.M. 202

Procedure for
Rounding

****THIS IS A NEW IM. - PLEASE READ CAREFULLY.****
 PROCEDURE FOR ROUNDING DATA

SCOPE

When comparing test data to the specification limit, a uniform method is used to round the data. When a rounding method is not specified elsewhere for the test data, the method to be used is the Rounding Method in ASTM E29 except that the rounding procedure in section 6.4.3 is replaced as below and 6.4.4 is eliminated.
6.4.3 When the digit next beyond the last place to be retained is 5 , and there are no digits beyond this 5 , or only zeros, increase by 1 the digit in the last place retained.

When the lowa DOT provides a computer program or spreadsheet for reporting test results, the rounding procedure will be as reported by the computer software.

PROCEDURE

The modified ASTM E29 rounding procedures and rounding method are:
A. Determine the last digit to be used.

1. The last digit to be used may be specified in the test procedure.

An example of this would be in IM 316, "Report the modulus of rupture to the nearest 5 psi".
2. For comparing a test result to the specification, the last digit in the specification limit is used to round the test result (unless noted in the specification).

An example of this would be the slump for structural concrete in Article 2403, "...allowing a maximum of 4 inches as a tolerance." If the test result for a slump test was $411 / 4 "$, the result would be within the tolerance because it rounds to 4 . If the maximum was stated as, "...allowing a maximum of 4.0 inches as a tolerance"; then the result $41 / 4$ " would be outside the tolerance.
B. Rounding Procedure

1. If the digit following the last digit to be used is less than 5 , do not change the last digit used.

Example: 1.861 would round to 1.86 for the nearest 0.01
2. If the digit following the last digit to be used is more than 5 , raise the last digit used one number.

Example: 1.861 would round to 1.9 for the nearest 0.1
3. If the digit following the last digit to be used is exactly 5, raise the last digit used one number.

Example: 1.851 would round to 1.9 for the nearest 0.1
C. Rounding Procedure for $50,5,0.5,0.05$, etc.

To round to the nearest $50,5,0.5$, or 0.05 :

1. Double the number you are rounding.
2. Round that number to the nearest $100,10,1$, or 0.1 using the procedure in B above.
3. Divide this rounded number by 2.

Example: Round 1.811 to 0.05

1.811 X 2= 3.622
3.622 rounds to 3.6
$3.6 / 2=1.80$ is the result of rounding 1.811 to the nearest 0.05 .
D. Rounding Procedure for other increments; $0.02,0.25$, etc.

To round to the nearest 0.02 , or 0.25 :

1. Divide the number you are rounding by the increment.
2. Round that number to the nearest whole number using the procedure in B above.
3. Multiply this rounded number by the increment.

Example: Round 1.811 to 0.25

1.811 / 0.25= 7.244
7.244 rounds to 7

7 X . 25 = 1.75 the result of rounding 1.811 to the nearest 0.25 .
E. Rounding Procedure for fractions.

To round fractions, they must first be converted to a decimal. Then the procedures B through D can be used.
I.M. 203

Consultation by Materials on Construction Projects

CONSULTATION PROVIDED BY MATERIALS PERSONNEL ON CONSTRUCTION PROJECTS

INTRODUCTION

In addition to the routine duties associated with the inspection of materials, assurance sampling and testing, and certain laboratory operations, the District Materials Engineer (DME) is required to monitor Quality Control and acceptance procedures, and provide consultation when difficulties are encountered.

CONSULTATION

Plant inspectors are by instruction required to consult the DME through the Resident Construction or County Engineer when the contractor encounters difficulty with regard to specification compliance and satisfactory plant operations. Consultations are also required when technical problems become evident to personnel performing sampling and testing and other specialized functions. The DME should provide the necessary assistance and guidance when conditions indicate action is required.

GUIDELINES FOR CONSULTATION

In many cases plant equipment operation and maintenance practices are directly related to problems associated with the work. Materials handling and storage procedures also cause difficulty at times. Sampling, testing and related inspection functions require re-evaluation when difficulties are encountered on a project. The following guidelines should be observed when Materials personnel are consulted for guidance:

1. Determine who is responsible for the problem and advise the appropriate party.
2. If the difficulty is associated with sampling, testing or related inspection functions provide the necessary guidance or instruction if practical and advise the engineer in charge of action taken.
3. If the difficulty is associated with the contractor's equipment or procedures, reaffirm the responsibility and requirements assigned to the contractor by the contract documents. The DME should then assist the contractor in identifying the problem by performing additional tests, calibrations, or other measurements as provided for in the specifications and appropriate instructions.
4. In the event that the standard procedures do not properly identify the factors causing the difficulties encountered, the DME may provide additional guidance, if requested, with the clear understanding that such further consultation will not relieve or reduce the contractor's responsibility for solving problems associated with the work. Assistance so provided shall not include management services associated with the operation and maintenance of the contractor plant equipment and the direction of the contractor personnel.
I.M. 205

Quality Assurance Program

QUALITY ASSURANCE PROGRAM FOR CONSTRUCTION OVERVIEW \& DESCRIPTION

INTRODUCTION

The Iowa Department of Transportation (DOT) has established the following Quality Assurance Program to assure that the quality of materials and construction in all highway construction projects is in reasonable conformity with the requirements of the approved plans and Specifications, including approved changes. The program reflects conformance with the criteria contained in the regulation for Quality Assurance Procedures for Construction, published as 23CFR 637(B) on June 29, 1995. It consists of an Acceptance Program and an Independent Assurance Program (IAP), both of which are based on test results obtained by qualified persons and equipment.

This Quality Assurance Program allows for the use of the Contractor's test results as part of the acceptance decision if satisfactory validation is achieved by the Agency in accordance with IM 216, IM 511, and IM 530. The IAP, as presently structured, is conducted exclusively by the Contracting Agency. The acceptance of all materials and workmanship is the responsibility of the Engineer.

In order to avoid an appearance of a conflict of interest, any qualified non-DOT laboratory shall perform only one of the following types of testing on the same project: Verification testing, quality control testing, IAP testing, or dispute resolution testing.

ACCEPTANCE PROGRAM

Materials incorporated into highway construction projects shall be subject to sampling and testing, including Quality Control (QC) sampling and testing when required by specification. Sampling and testing shall be performed in accordance with location, frequency and procedures identified in IM 204.
A. Quality Control Sampling \& Testing

Contractor-performed QC sampling and testing may be used as part of an acceptance decision when required or allowed by specifications. Contractor QC sampling and testing personnel, laboratories, and equipment shall be qualified in accordance with the lowa DOT Technical Training \& Certification Program (IM 213) and the Materials Laboratory Qualification Program (IM 208), and shall be evaluated under the Independent Assurance Program.

If the Contracting Authority eliminates contractor quality control testing from the contract documents, the Contracting Authority shall perform the quality control testing at the frequencies identified in IM 204. Validation of these test results is not required.
B. Verification Sampling \& Testing

Verification of quality is performed on critical materials, through independent sampling and testing, at a frequency identified in IM 204. Verification sampling and testing is done by Agency personnel or personnel hired by the Agency excluding the Contractor or vendor.
Agency sampling and testing personnel, laboratories, and equipment will be qualified in accordance with the lowa DOT Technical Training \& Certification Program (IM 213) and the Materials Laboratory Qualification Program (IM 208), and will be evaluated under the Independent Assurance Program.

Verification samples will be obtained by agency sampling. For some sampling identified in IM 204, the Contractor shall assist with sampling as directed and witnessed by certified Agency personnel. The sample location and time will be randomly selected by the Agency (except when noted elsewhere) and will only be given to the Contractor immediately prior to sampling. To maintain the integrity of the sample, it will either be transported by Agency personnel or secured by a tamper proof method and transported by the Contractor.

QC test results to be used as part of the acceptance decision will be validated by verification test results. Validation of Contractor test results will be done in accordance with IM 216, IM 511, and IM 530. Contractor test results that fail the lot validation shall not be used for acceptance of that lot unless the dispute resolution system resolves the discrepancy. Verification test results will be used for lot acceptance pending the dispute resolution.
C. Quality Control Plans

When required by the Specifications, a Quality Control Plan (QCP) must be developed by the Contractor or producer and submitted to the Engineer for review. Minimum requirements for the QCP will be provided in an IM or specification.

D. Dispute Resolution System

When QC test results are used as part of the acceptance decision, testing disputes arising between the Contracting Agency and the Contractor shall be resolved in a reliable, unbiased manner or an evaluation performed by the lowa DOT Central Materials Laboratory. Resolution decisions by the lowa DOT Central Materials Laboratory will be final.

Unless specified elsewhere, the District Materials Engineer will select some or all of the following steps for the dispute resolution:

1. Check all numbers and calculations.
2. Review past proficiency and validation data.
3. Review sampling and testing procedures.
4. Check equipment operation, calibrations and tolerances.
5. Perform tests on split samples or reference samples.
6. Involve the Central Materials Laboratory.

If the discrepancy cannot be resolved using the steps listed above, or if it is determined that the Contractor's testing is in error, then the Agency test results will be used for the acceptance decision for that lot.

INDEPENDENT ASSURANCE PROGRAM

The Independent Assurance Program (IAP) will evaluate all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (Includes Contractor, Contracting Agency, and consultant). Testing performed by the Central Materials Laboratory is not subject to IAP. The Central Materials Laboratory maintains accreditation through the AASHTO Materials Reference Laboratory (AMRL) Program. The goal of the IAP program is to check each active tester at least once per calendar year.

The IAP includes both system- and project-based approaches defined as follows:

- Project Approach. The frequency of IAP activities is based primarily on quantities of materials being tested and requires minimums (as per IM 204) on every project.
- System Approach. The frequency of IAP activities is based on time intervals, regardless of the number of tests, quantities of materials, or numbers of projects being tested by the individual and equipment being evaluated.

The systems approach for IAP was implemented statewide in 1999 for evaluation of Contractor, consultant, city, county, and state equipment, procedures, and personnel involved with project acceptance. Within implementation of the systems approach, the District Materials Engineer may find it more appropriate to retain use of the project approach for IAP on specific projects when the systems approach cannot be effectively applied.

Independent assurance includes evaluation based on:
Calibration checks
Split samples
Proficiency samples
Observation of sampling and testing procedures

A. IAP Personnel \& Equipment

IAP testing equipment must not be the same equipment that was used by the project QC or verification personnel. IAP personnel must not be involved in the project verification testing or QC testing for the sampling and testing procedure they are evaluating on that project.
B. Comparison of Test Results

A prompt comparison of the test results obtained by the individual being evaluated and the IAP tester will be performed by the Engineer. If results of the comparisons do not comply with tolerances provided in IM 216 or criteria in IM 208, Appendix C, a review of the test procedures and equipment shall be performed immediately to determine the source of the discrepancy. Corrective actions must be identified, incorporated as appropriate and followed by additional IAP testing. Test results from all the samples involved in the IAP will be documented and reported in the appropriate District or project files.

C. Annual Report of IAP Results

The Central Materials Office will compose and submit an annual report to the FHWA Division Administrator summarizing the results of the lowa DOT's systems approach IA Program. This report will identify the number of sampling and testing personnel evaluated by systems approach IA testing, the number of evaluations found to be acceptable and unacceptable, as well as a summary of any significant system-wide corrective actions taken.

SIGNIFICANT DIGITS IN TEST DATA

When comparing test data to the specification limit, a uniform method is used to round the data. When a rounding method is not specified elsewhere for the test data, the method to be used is the Rounding Method in ASTM E29 except that the rounding procedure in section 6.4.3 is replaced as below and 6.4.4 is eliminated.
6.4.3 When the digit next beyond the last place to be retained is 5 , and there are no digits beyond this 5 , or only zeros, increase by 1 the digit in the last place retained.

When the lowa DOT provides a computer program or spreadsheet for reporting test results, the rounding method will be as reported by the computer software.
I.M. 207

Independent Assurance Program

****THIS IS A NEW IM. - PLEASE READ CAREFULLY.****

INDEPENDENT ASSURANCE PROGRAM FOR CONSTRUCTION OVERVIEW \& DESCRIPTION

The Independent Assurance Program (IAP) is a part of the lowa DOT Quality Assurance Program for Construction. Appendix A contains the details of who is covered and what sampling and testing is covered in the program.

- Purpose of IAP— IAP is an unbiased and independent assessment of all sampling, testing, and testing equipment. This assessment includes evaluation of procedures and equipment used for the acceptance of highway materials and construction. 23 CFR Part 637 requires each state to have an IA Program.
- IAP is distinct from and not intended as an acceptance process or for use in verification of contractor sampling and testing results. IAP is distinct from and not intended for production quality control (QC) purposes. If IAP results indicate a potential problem with quality, the results may be used to initiate additional testing.
- IAP sampling shall be done in such a manner as to minimize variability. In order to eliminate material and process variability, split samples should be used. IAP samples may be taken independently of Agency verification or Contractor/Producer QC samples, or may be a split of a verification or an QC sample.
- Deficiencies in verification or QC processes that are identified through the IAP program must be investigated and resolved.
- IAP is an essential tool that helps to ensure integrity within the quality assurance (QA) program.

The IAP includes both system- and project-based approaches defined as follows:

- Project Approach. The frequency of IAP activities is based primarily on quantities of materials being tested and requires minimums (as per IM 204) on every project. For projects with small quantities, project IAP will not be required:

HMA quantities less than 5000 tons
PCC paving quantities less than 5000 sq. yds.
PCC for structural and miscellaneous less than 50 cu . yds.
Non-Proportioned Aggregate less than 5000 tons.

- System Approach. The frequency of IAP activities is based on time intervals, regardless of the number of tests, quantities of materials, or numbers of projects being tested by the individual and equipment being evaluated. Each active technician should be checked at least 1 time per year. For HMA, the Districts Laboratories perform proficiency testing monthly during the construction season and field HMA laboratories perform proficiency testing up to 3 times per construction season. If a significant deficiency is observed for a technician, a later second check should be made.

Record keeping is required for all IAP observations and tests. The record should include who and what was checked, when, where, and the outcome of the check. An annual report is required by the FHWA detailing the system approach program- how many people for each test were checked, what was found, and how it was resolved. Also any systematic issues should be detailed (i.e. problems with equipment or calibrations, need for additional training, improvements in test procedure instructions.).

IAP Responsibilities

HMA				
Procedure to Check	To Whom	By Whom	How	Approach(1)
Field Density Sampling	RCE	Training	Computer Program \& Training	System
Field Density Testing	RCE	DME	Test same cores- IM 216	Project
Mix Sampling	CONTR, RCE	DME	Observe	Project
Mix Properties Testing	CONTR, DME	CTRL	Proficiency- IM 208	System
Binder Sampling	CONTR, RCE	Training or DME	Training or Observe	Both
Binder Properties Testing	DME	CTRL	Proficiency- IM 208	System
Aggregate Grad. Sampling	RCE, CONTR	Training or DME	Training or Observe	Both
Aggregate Grad. Testing	RCE, CONTR, DME(2)	DME, CTRL	Proficiency or Split test IM 208/216	System
Aggregate Quality Sampling	DME	Training/Demo.	Training	System
Aggregate Quality Testing	None	None	None	System
Ride Testing	CONTR, DME	CTRL	Yearly Calibration	

Supersedes October 16, 2007

IAP Responsibilities

PCC Paving				
Procedure to Check	To Whom	By Whom	How	
Core Sampling	RCE	Training	Training	
Core Testing	RCE	DME	Test same cores- IM 216	
Air Sampling	RCE	DME	Observe	System
Air Testing	RCE	DME	Side-by-side tests- IM 216	
Aggregate Grad. Sampling	RCE, CONTR(3)	Training or DME	Training or Observe	
Aggregate Grad. Testing	RCE, CONTR(3),	DME	Splem	
Aggregate Quality Sampling	DME(2)	SME	Training/Demo.	Training
Aggregate Quality Testing	None	None		
Cementitious Materials Sampling	DME	Training/Demo.	Training	
Cementitious Materials Testing	None	None		
Admixtures Sampling	DME	Training/Demo.	Training	
Admixtures Testing	None	None	System	
Ride Testing	CONTR, DME	CTRL	Searly Calibration	

Note 1- The DME may use different approaches for DOT, local agency, and contractor personnel. Note 2- When the District Laboratory is performing the verification gradation testing for a project. Note 3- QMC projects only.
RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer
CTRL-Central Materials Office
CONTR-Contractor
Supersedes October 16, 2007
IAP Responsibilities

PCC Structures				
Procedure to Check	To Whom	By Whom	How	Approach(1)
Slump Sampling	RCE	DME	Observe	Observe or side-by-side tests- IM 216
Slump Testing	RCE	System		
Air Sampling	RCE	DME	Observe	System
Air Testing	RCE	DME	Side-by-side tests- IM 216	System
Aggregate Grad. Sampling	CONTR, RCE	DME	Observe	System
Aggregate Grad. Testing	RCE	DME	Split tests- IM 216	System
Aggregate Quality Sampling	DME	Training/Demo.	Training	System
Aggregate Quality Testing	None	None		
Cementitious Materials Sampling	DME	None	Training	System
Cementitious Materials Testing	None	Training/Demo.	Training	System
Admixtures Sampling	DME	None	Yearly Calibration	
Admixtures Testing	None	CTRL		System
Ride Testing	CONTR, DME			
Note 1- The DME may use different approaches for DOT, local RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor				

IAP Responsibilities

Non-Proportioned Aggregates (Including Recycled)				
Procedure to Check	To Whom	By Whom	How	Approach(1)
Aggregate Grad. Sampling	CONTR, DME	Training or DME	Training or Observe	Both
Aggregate Grad. Testing	CONTR, DME	DME	Proficiency or Split test IM 208/216	System
Aggregate Quality Sampling	DME	Training/Demo.	Training	System
Aggregate Quality Testing	None	None		

[^2]RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor or Producer
I.M. 208

Materials Lab
Qualification

MATERIALS LABORATORY QUALIFICATION PROGRAM

GENERAL

The FHWA has outlined a Laboratory Qualification Program in the Federal-Aid Policy Guide update published as 23 CFR 637 on June 29, 1995. The updated guide has requirements for laboratories performing testing on Federal-Aid highway projects.

In order to avoid an appearance of a conflict of interest, any qualified non-DOT laboratory shall perform only one of the following types of testing on the same project: Verification testing, quality control testing, IA testing, or dispute resolution testing.

LABORATORIES TO BE QUALIFIED

The following laboratories are included in the qualification program for all Federal-Aid projects:

Central Materials Laboratory
6 District Laboratories
District Area Laboratories
Resident Construction Laboratories*
Aggregate Producer Laboratories
Soils Field Laboratories*

* May be qualified at the time of a project.

Ready Mix Laboratories
PCC Contractor Laboratories
HMA Contractor Laboratories
Consultant and Commercial Laboratories *
City and County Laboratories *

LABORATORY QUALIFICATION PROCESS

A two-level qualification system is required by the FHWA. Laboratories are either accredited or qualified. The accreditation process is more rigorous than the qualification process.

Accredited Laboratory Process

The Central Materials Laboratory and the six District Laboratories will be accredited as outlined in the 23 CFR 637 guide. The Central Materials Laboratory is accredited through the AASHTO Materials Reference Laboratory Program. The District Materials Laboratories will be accredited by using the Central Materials Staff and equipment to check testing and testing procedures and by using the same calibration and training documentation process. Laboratories will be accredited for a two-year period. In addition, an annual review will be made by the Central Office Staff. Appendix A contains the procedures for accrediting the District Materials Laboratories.

Qualified Laboratory Process

The remaining laboratories will be qualified as outlined below:
The District Materials Offices will qualify laboratories. Laboratories will be qualified for a twoyear period. In addition, an annual review will be made by District Staff. Appendix B contains the procedures for qualifying materials laboratories.

Four laboratory types will be qualified, aggregate laboratories, PC Concrete laboratories, soils field laboratories, and Hot Mix Asphalt laboratories.

Qualified laboratories will have the following:

1. Current manuals and test methods to perform the qualified testing available
2. A technician certified by the lowa DOT to perform the qualified testing
3. Proper equipment to perform the qualified testing (calibrated or checked annually according to Appendix B)
4. Satisfactory project and proficiency test results
5. Documentation of equipment calibrations, equipment checks, and proficiency results

The District may elect to accept qualifications, accreditations, or inspections from other government agencies or Laboratory inspection agencies. The AASHTO Materials Reference Laboratory (AMRL) and Cement and Concrete Reference Laboratory are 2 common Laboratory inspection programs. The links are:
http://www.amrl.net/amrlsitefinity/default/aap/r18labs.aspx
http://www.ccrl.us/Lip/LabListReport.pdf

ADMINISTRATION OF THE PROCESS

The Central Materials Laboratory will be responsible for implementation and operation of the Laboratory Qualification Program. The Central Materials Laboratory will accredit the District Laboratories. The District Materials Offices will qualify laboratories.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

Disputes concerning calibration and correlation of equipment will be resolved by the office responsible for the qualification. For disputes that cannot be resolved at the District, the Central Materials Laboratory will be the final authority.

DISTRICT LABORATORY ACCREDITATION PROGRAM

The Central Materials Laboratory (CML) will accredit the District Materials Laboratories and maintain records of the accreditation for five years. The CML Staff will check the following prior to accrediting a laboratory:

1. Check for current manuals and test procedures covering the accredited testing.
2. Check the certification and training records of the testing personnel.
3. Document that proper equipment is available to perform qualified testing.
4. Check documentation system.

Scheduling of the annual accreditation review will be discussed with the laboratories needing accreditation.

Table 1 is the list of items to be reviewed.

An oral close out on any deficiencies will be held with the testing personnel. Written notice will be sent within two months of the inspection. CML personnel will re-inspect if necessary after correction of any deficiencies.

A report showing the laboratory, the date accredited, and the expiration date will be issued by the Materials Testing Engineer.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

The CML and the District Materials Engineer will resolve disputes concerning calibration and correlation of equipment.

TABLE 1 - Laboratory Accreditation Checklist

		Minimum Calib./Verif. Interval	
Tester Qualifications-Proper Iowa DOT certifications			Calib./Verif. Procedure
Current Test Procedures			
Current Calibration Procedures \& Records			
Documentation of correlation results and corrective			
actions taken for previous construction season			

LABORATORY QUALIFICATION PROGRAM

The District Materials Office will qualify the other laboratories and maintain records of the qualification for three years. The District Staff will check the following prior to qualifying a laboratory:

1. Establish the type of laboratory (Aggregate, Hot Mix Asphalt, Soils Field, PC Concrete).
2. Check for current manuals and test procedures covering the qualified testing.
3. Check the certification of the testing personnel.
4. Document that proper equipment is available to perform qualified testing.
5. Check documentation system.

Scheduling of the qualification review will be discussed with the laboratories seeking qualification. The District staff performing the qualification review should have the appropriate certification (IM 213) for the type of laboratory and tests being reviewed. The District Materials Engineer should be contacted for laboratories that have been qualified in other states. The District Materials Office may qualify a laboratory based on an acceptable qualification report and qualification program from another state transportation agency.

Table 1 and the pages following cover the list of items to be reviewed.
An oral close out on any deficiencies will be held with the testing personnel. Written notice will be sent within two weeks of the inspection. District personnel will re-inspect after correction of any deficiencies.

A form showing the laboratory type, the date qualified, and the expiration date will be issued by the District Materials Engineer.

The list of Qualified Laboratories will be maintained on a database accessible by authorized Materials Personnel.

NON-COMPLIANCE/DISPUTE RESOLUTION

A laboratory that does not meet the requirements of the IM is subject to elimination from the qualification program.

The office responsible for the qualification will resolve disputes concerning calibration and correlation of equipment. For disputes that cannot be resolved at the District level, the Central Materials Laboratory will be the final authority.

Table 1 - Laboratory Qualification Checklist

V		Calib./Verif. Interval	Calib./Verif. Procedure
Tester Qualifications-Proper lowa DOT certifications			
Current Test Procedures			
Current Calibration Procedures \& Records			

Documentation of correlation results and corrective actions taken for previous construction season.		
Soils Field Laboratory		
Balances	12 months	lowa 917
Sieves- wear, tear, size	12 months	
Mold, Base, and rammer condition	(a)	IM 309
Aggregate Laboratory		
Balances	12 months	lowa 917
Sieves- wear, tear, size, and opening size	12 months	Iowa 1506
Splitter- condition	12 months	(Visual)
Mechanical Shakers- condition (if used)	12 months	Iowa 1502
HMA Laboratory		
Balances- and water bath	12 months	lowa 917
Sieves- wear, tear, size, and opening size	12 months	Iowa 1506
Splitter- condition	12 months	(Visual)
Mechanical Shakers- condition (if used)	12 months	Iowa 1502
Rice equipment- vacuum and flask	12 months	IM 350
Thermometers	12 months	Iowa 1607
Ovens- temperatures	12 months	Iowa 1501
Gyratory Compactor and molds	12 months	Iowa 1522
PCC Laboratory		
Balances	12 months	Iowa 917
Sieves- wear, tear, size, and opening size	12 months	lowa 1506
Splitter- condition	12 months	(Visual)
Mechanical Shakers- condition (if used)	12 months	Iowa 1502
Air Meter	12 months	IM 318
Slump Cone and equipment-condition	12 months	
Flexural Strength Apparatus	12 months	Central Lab

(a) The mold, base or rammer should be checked if the condition warrants.

LABORATORY ITEMS

PCC Portable Paving Plant
The following list contains, as a minimum, what is required for a qualified PCC paving plant laboratory. The test equipment to perform each of the required tests is contained in the respective IM.

- Field Lab of suitable size for workspace, space to perform tests, and sample storage. Locate the Field Lab so it is convenient to the plant, but outside the influence of plant vibration.

Air-conditioned
Personal computer

Phone
All in one printer
Sample storage
Work table
Electrical outlets
Running water available to perform necessary testing Desk and chair
Incidental spoon, pans, pails

- The personal computer shall be capable of running lowa DOT programs. It is recommended to have at least Windows 2000 or newer software on the computer. Iowa DOT programs have been checked and are capable of running on Windows 2000 and newer software.

HMA Plant

The following list contains, as a minimum, what is required for a qualified asphalt laboratory. The test equipment to perform each of the required tests is contained in the respective IM.

- Field Lab and Office [Suggested size 8 ft x 44 ft . ($2.4 \mathrm{~m} \times 13.41 \mathrm{~m}$)]. Locate the Field Lab so it is convenient to the plant, but outside the influence of plant vibration.

Air-conditioned
Personal computer
Phone
Fax machine
Copy Machine
Sample storage
Work table
Bulletin board
Water available to perform necessary testing
Desk and chair
Incidental spoon, trowels, pans, pails

- The personal computer shall be capable of running lowa DOT programs. It is recommended to have at least Windows 2000 or newer software on the computer. Iowa DOT programs have been checked and are capable of running on Windows 2000 and newer software.

Removable storage device
Color monitor, VGA or better
Printer

- Diamond saw for cutting core lifts.
- Diamond core drill (minimum 4" diameter core).

Iowa Department of Transportation

MATERIALS LABORATORY QUALIFICATION PROGRAM Laboratory Inspection - per Materials Instructional Memorandum 208

Current manuals and written test procedures available? \qquad
Current calibration procedures and records? \qquad

Documentation of correlation results and corrective actions taken for previous construction season? \qquad
\qquad

Proper equipment available to perform qualified testing?
\qquad
Other remarks:

Date of inspection:	Qualification expiration date:
Inspection performed by:	
	Print name
	Sign name
Inspection received by:	
	Print name

District Number

\qquad
cc: Materials Engineer, Contractor/Producer, Ames, File

Iowa Department of Transportation

AGGREGATE LABORATORY INSPECTION QUALITY CONTROL CHECKLIST

Splitter

Is the splitter in good condition?
(i.e., missing shuts, cracked welds, or leaking seams)

Shaker (lowa Test Method 1502)
Is shaker apparatus secure and level?

Scale

Are the laboratory weights used for routine calibrations accurate?
(Use 0.1% difference from our calibrated weights as standard.)
\qquad
\qquad

Comments \qquad

cc:Materials Engineer	Inspected By:	
Contractor/Producer Date Inspected: Ames		
File		

Iowa Department of Transportation
hMA LABORATORY INSPECTION
QUALITY CONTROL CHECKLIST

Rice Pycnometer

(IM 350)
Calibration chart and/or documentation available?
Equipment achieves between 25.5 and 30 mm of mercury vacuum?
Mercury is free of bubbles?

工 \quad| 工 |
| :--- |
| \square |

Gyratory/Marshall Compactor

(IM 325/IM 325G)
Calibration documentation available?
Is equipment generally clean?
Documentation of annual mold measurements?
$\square \quad \square$

Ovens

(IM 325/IM 325G)
Documentation of temperature checks?
General condition satisfactory?
Do all parts work as intended?
\qquad

Water Bath
 (IM 321)

Temperature? \qquad

Correlation

Correlation results available for previous year? \qquad
Comments:
\qquad

NOTE: HMA labs must also qualify as an aggregate lab.

cc: Materials Engineer	Inspected By:	
Contractor/Producer	Date Inspected:	
Ames		
File		

Iowa Department of Transportation

READY MIX/PCC PAVING LABS QUALITY CONTROL CHECKLIST

Contractor/Producer:	Location: Certification No:	
Certified Technician:		
Inspection Checklist Items:		
Air Meter (IM 318)	Yes	No
Check meter using approved 5\% pugs. Is air meter clean? Proper rod and mallet.		

Slump Cone (IM 317)

Interior of cone free of dents or projections.
$5 / 8$ " by 24 " tamping rod.
Rigid, nonabsorbent base.
Equipment clean and free of hardened concrete. \qquad
Beam Breaker (IM 316)
Current annual calibration sheet
Equipment clean.

(IM 328)
 Beam Molds

Molds clean and free of dents
General condition of molds good. \qquad

Comments
\qquad
NOTE: PCC labs must also qualify as an aggregate lab.

cc: Materials Engineer	Inspected By:	
Contractor/Producer	Date Inspected:	
Ames		
File		

Iowa Department of Transportation

SOILS FIELD LABORATORY INSPECTION QUALITY CONTROL CHECKLIST

Sieves
Are the sieves in good condition (no loose frames, holes, or tears)?

Mold, Base, and Rammer (IM 309)
Are they in good condition. Mold round and the base flat?
If not, check the dimensions for out-of-tolerance.

Rigid Foundation
Do they have a concrete pad or floor or other rigid foundation to compact the specimen on?

Comments \qquad

cc:Materials Engineer	Inspected By:	
Contractor/Producer Date Inspected: Ames		
File		

INDEPENDENT ASSURANCE PROFICIENCY \& TESTING FOR HMA

GENERAL

The HMA Proficiency Program is part of the Independent Assurance Program described in IM 205. The HMA Proficiency Program provides participating laboratories with a means to:

- Check both the instrument and the operator under actual testing conditions.
- Compare individual test results with the average of a large body of results so that corrective action may be taken where wide discrepancies occur.
- Evaluate the quality of test results, thereby reducing the risk of dispute due to testing errors.

Each accredited and qualified Laboratory and certified staff shall establish and maintain their proficiency by following program described herein.

A project approach for independent assurance may be used for RCE, county, city, and consultant laboratories.

WITNESSING FOR IAP

The District Materials Offices are responsible for witnessing the HMA mix sampling, splitting, and testing; the binder sampling; and the cold feed aggregate sampling and quartering (if used as the acceptance method for gradation). When using either the project approach or the system approach, document with a written report (Figure 1 is a good example):

- Who was checked

When

- Where including project number
- What activity was checked
- Comments on observations

The name of the person doing the IA

PROFICIENCY SAMPLE

The Central Materials Laboratory will prepare and send out proficiency samples during the construction season (April through September). The samples and tests for laboratories will be as follows:
A. District Laboratories

1. Asphalt Binder
a. $\mathrm{G}^{*} / \operatorname{Sin}$ Delta
2. HMA Mix
a. $G_{m b}$ Laboratory Density
b. $G_{m m}$ Maximum Specific Gravity
c. \% Binder, Ignition Oven
d. Gradation, Ignition Oven
3. Combined Aggregate
a. Gradation
b. $G_{\text {sa }}$ Apparent Specific Gravity (every other sample)
c. $G_{\text {sb }}$ Bulk Specific Gravity (every other sample)
d. Percent Absorption (every other sample)
e. Fine Aggregate Angularity (every other sample)
f. Sand Equivalency (every other sample)
B. HMA Laboratories
4. HMA Mix
a. $G_{m b}$ Laboratory Density
b. $G_{m m}$ Maximum Specific Gravity
5. Combined aggregate
a. Gradation
C. Aggregate Laboratories
6. Gradation

PROFICIENCY SAMPLE FREQUENCY

A. District Laboratories

Each District Laboratory will receive a set of proficiency samples monthly April through September. The samples will be tested and the results reported within 14 calendar days of receipt
B. Contractor HMA laboratories

Each active certified HMA technician performing quality control testing for state or local federal aid projects will pick-up proficiency samples in April from the closest District Laboratory. The samples will be tested and the results reported to the Central Materials Laboratory by May 15.

For active certified technicians that do not obtain a proficiency sample in April, they must contact the District Laboratory in the District where they will be working and obtain and test
a proficiency sample prior to the start of paving. Results will be compared to the District Laboratory results for that month.

TEST RESULT ANALYSIS

Test results from the proficiency samples will be analyzed using the current AASHTO Material Reference Laboratory (AMRL) procedure. The analysis compares the results from each participant and each District and Central Laboratory to the overall mean. Test results will also be compared to the Central Materials Laboratory results.

Any test result that is 3.0 standard deviations or greater from the mean will be considered failing. Two consecutive proficiency sample results that are 2.0 standard deviations or greater from the mean will be considered failing.

In the event of a small data set or large or small variation within a data set, the individual results will be compared with the Central Laboratory results. IM 216 will be used to compare the results. Proficiency test results beyond the tolerance will be considered failing.

INVESTIGATION OF FAILING TEST RESULTS

The technician with failing test results shall review the calculation, test procedures, and perform a calibration if warranted. When there are two or more consecutive failing results, the Central Materials Laboratory or the District Material Engineer will contact the technician and arrange to conduct an evaluation of the procedures and equipment to correct any deficiencies. Three consecutive failing results by a technician will constitute unsatisfactory performance as defined in IM 213 and become a part of their permanent file.

If an active certified HMA technician fails to obtain and test a proficiency sample, the District Materials Engineer will conduct an investigation and if warranted issue an unsatisfactory performance notice.

If an active DOT certified HMA technician fails to test and report a proficiency sample by deadline, the District Materials Engineer will be notified to conduct an investigation and if warranted issue an unsatisfactory performance notice.
I.M. 209

Approved Producers Program
\& Certified Aggregate

Iowa Department of Transportation
Office of Materials

APPROVED PRODUCER PROGRAM AND CERTIFIED AGGREGATES

APPROVED PRODUCER PROGRAM

In order to furnish certified aggregates to projects, an aggregate producer shall be on the approved aggregate producer listing (Appendix B, attached). This will also apply to recycled product yards and/or processors. The specific requirements, including the details of the required quality control program are in Appendix A (attached).

Specification limits for aggregates being produced are found in Appendix C and D. For complete details on aggregate quality and gradation requirements, refer to the appropriate referenced specification.

Non-compliance to the approved Producer Quality Control Program shall constitute grounds for the source and/or producer to be placed on conditional status by the District Materials Engineer. Continued non-compliance will be considered sufficient grounds to remove the producer from the Approved Producer List.

Appendix E contains the "Notification of Violations of the Approved Producer's Quality Control Program". This is a written notice from the District Materials Coordinator or District Materials Engineer to a Producer identifying violation(s) of the Producer's Quality Control Program or requirements of the Approved Producer Program. A written response is required from the Producer describing how the violation occurred, how the violation will be rectified, and what will be done so the violation will not occur or continue to occur in the future.

An Aggregate Review Board will meet, as needed, for disciplinary actions and appeals involving Approved Producers.

The Aggregate Review Board shall consist of:

- The State Construction and Materials Engineer
- The Chief Construction and Materials Geologist

CERTIFIED AGGREGATES - SAMPLING AND TESTING

The Aggregate Producer shall be responsible for source product quality control. Aggregate quality will be determined by testing samples secured by District Materials personnel. This will not relieve the producer or supplier of their responsibility for quality of the material. Producers must meet the responsibilities outlined in Guidelines for Aggregate Producer Quality Control Program, IM 209 Appendix A.

Not less than 24 hours before start up, or as soon as possible for a production change, the appropriate District Materials Engineer shall be notified. The notification shall include the estimated daily production and total production, the intended use (project or warehouse stock), production ledge(s) if applicable, and responsible person(s). Failure to notify may result in additional quality sampling and testing, or rejection of the material.

Aggregates to be used in highway construction projects shall be subject to sampling and testing, including Producer Quality Control (QC) sampling and testing. Sampling and testing shall be performed during production in accordance with the minimum frequencies listed in the table below.

TABLE 1. SOURCE SAMPLING AND TESTING REQUIREMENTS

Sample Type	Producer Quality Control Testing Frequency	Iowa DOT Verification Testing Frequency	
Proportioned Aggregates			
Gradation	$1 / 1500 \mathrm{~T}^{(1,4)}$ minimum	$1 / 18,000 \mathrm{~T}^{(2,4)}$	
Quality	$1 / 12,000 \mathrm{~T}$ or $1 / \mathrm{month}$, whichever is more frequent ${ }^{(3)}$	$1 / 12,000 \mathrm{~T}$ or $1 /$ month, whichever is less frequent ${ }^{(2)}$	
Non-Proportioned Aggregates			
Gradation	$1 / 3000 \mathrm{~T}^{(\mathbf{1})}$ minimum	$1 / 18000 \mathrm{~T}^{(2)}$	
Quality	$1 / 12,000 \mathrm{~T}$ or $1 /$ month, whichever is more frequent ${ }^{(3)}$	$1 / 12,000 \mathrm{~T}$ or $1 /$ month, whichever is less frequent ${ }^{(2)}$	

Notes:

1 Additional QC testing may be required at the time material is shipped to a project, for a stockpiled material carried over a winter season or if there is evidence of segregation, contamination, or degradation.
2 May be adjusted by the DME for source specific needs.
3 When required by the DME for sources where historic quality test results have approached or exceeded the specification limits (IM 307, 344, and 368).
4 Variation of Fineness Modulus (FM) by more than 0.2 lower than the target fineness or more than 0.25 greater than the target fineness modulus should be investigated.

A. Producer Quality Control Sampling \& Testing

Producer QC sampling and testing personnel, laboratories, and equipment shall be qualified in accordance with the lowa DOT Technical Training \& Certification Program (IM 213) and the Materials Laboratory Qualification Program (IM 208). If Producer gradation test results are used as part of an acceptance decision, they will be evaluated under the Independent Assurance Program.

It is recommended that a Producer Quality Control Program include quality control testing to assist with ledge control and pit quality. Such tests may include: specific gravity (IM 307), clay lumps and friable material (IM 368), or shale in fine aggregate (IM 344). If historic data from a source indicate that quality test results approach or exceed specification limits the Engineer may require specific data be provided by the aggregate producer or supplier to the lowa DOT
(obtained by qualified persons and procedures). These data may include those tests listed above. See Table 1 for frequencies.

B. Iowa DOT Verification Sampling \& Testing

The District Materials Office will be responsible for monitoring the Producers Quality Control Program. Verification of quality and gradation is through independent sampling and testing. Verification sampling and testing is done by Agency personnel. Agency sampling and testing personnel, laboratories, and equipment will be qualified in accordance with the lowa DOT Technical Training \& Certification Program (IM 213) and the Materials Laboratory Qualification Program (IM 208).

When requested by the Agency, Producer or Contractor personnel shall assist with the sampling as directed and witnessed by the certified Agency personnel. The sample location and time will be randomly selected by the Agency (except when noted elsewhere) and will only be given to the Producer immediately prior to sampling. To maintain the integrity of the sample, it will be transported by Agency personnel or secured by a tamper proof method and transported by the Producer. The Agency may spilt the verification sample and give a portion to the Producer.

Verification gradation test results, when non-complying, will normally be provided to the Producer within 3 working days of sampling.

At no time will the District Materials Office representative issue directions to the producer. However, the representative will have authority and responsibility to question and where necessary reject any operation, which is not in accordance with the Specifications, Special Provisions, and Instructional Memorandums.
C. Validation of Non-Proportioned Aggregate Test Results

The verification gradation test results will be compared to the QC test results to validate the QC results for non-proportioned aggregate. Validation is based on the verification test results being within the specification limits. When the QC test results cannot be validated, the dispute resolution process will be used. Material shall not be shipped from the stockpile until the dispute is resolved. NOTE: Verification test results may be used solely for acceptance. When verification test results are used solely for acceptance, the acceptance criteria is Article 4109.

D. Fine Aggregate Test Results for PCC

The verification gradation test results may be used solely for acceptance. When verification test results are used solely for acceptance, the acceptance criteria is Article 4110. When failing verification gradation test results are determined, validated QC test results may be used in the acceptance process at the discretion of the District Materials Engineer.

E. Dispute Resolution System

Validation disputes arising between the Contracting Agency and the Producer or Contractor will be resolved in a reliable, unbiased manner usually within two weeks of notification of a dispute. If necessary, an evaluation will be performed by the lowa DOT Central Materials Laboratory. Resolution decisions by the lowa DOT Central Materials Laboratory will be final.

Unless specified elsewhere, the District Materials Engineer will select some or all of the following steps for the dispute resolution:

1. Perform a comparison between the verification result and QC result(s) for the same time period (If the QC sample is from a split with the verification sample, also compare the previous independently taken QC result). Use the tolerances in IM 216. If the results are within the tolerance, validation is achieved.
2. Check all numbers and calculations.
3. Isolate material in dispute and begin a new stockpile. Resample stockpile material in dispute.
4. Perform tests on split obtained by Agency personnel.
5. Review past proficiency and validation data.
6. Review sampling and testing procedures.
7. Check equipment operation, calibrations and tolerances.
8. In the event of multiple validation failures for a source, the DME may use F-test and ttest statistical methods to compare the set of QC results with the set of verification results. A 0.05 level of significance will be used and a set of at least 5 verification test results.
9. Involve the Central Materials Laboratory.

If the discrepancy cannot be resolved using the steps listed above then the Agency test results will be used for the acceptance decision for that lot.
F. Small Quantities

Verification sampling and testing may be waived by the DME for product quantities of less than 2000 tons. For quantities of less than 200 tons of non-critical aggregate, the DME may waive QC testing and approve the stockpile based on a visual inspection by the DME or the Engineer.

CERTIFIED AGGREGATES - DOCUMENTATION

A. Producer Test Documentation

All producer test results performed on certified aggregates, whether compliant or noncompliant, shall be reported weekly or as designated to the District Materials Engineer on Form \#821278. These reports shall indicate whether the aggregate is being produced for direct project delivery, stockpiling for a specific project, or for advance warehouse stock.

Selected production limits shall be included on Form \#821278.
Production limits for aggregate produced for use in HMA or PCC mix designs are generated by the contractor and supplied to the aggregate producer on Forms \#955 and \#955QMC respectively.
B. Certified Aggregate Delivery Documentation

Documentation may be accomplished by numbered truck ticket, transfer list or shipment
statement (such as Form \#821278), or by a bill of lading (for rail or barge shipments). The certified documentation shall be furnished to project inspection personnel or receiving contractor before material is incorporated.

- For aggregates as bid items measured by weight (mass), the certified truck tickets shall be numbered and include signatures or initials in accordance with Article 2001.07.
- A "secure electronic signature" as defined by IM 209 Appendix G may be acceptable for certification of truck tickets in lieu of an original signature.
- In the case of shipment by rail or barge, the documentation shall be sent to the project engineer and receiving contractor or ready mix operator no later than the same day as shipment source departure. The documentation shall include the rail car or barge number(s).
- Documentation not having an exact weight (mass) shall include an estimated quantity (i.e. transfer listings or Form \#821278, etc.).
- If the Producer/Supplier QC test results are used in the acceptance decision for nonproportioned aggregates, the Producer shall supply a signed summary documentation to the Project Engineer, including: the type of material and source, the total quantity, project number, and gradation results.
- When Agency test results are used for the acceptance decision of non-proportioned aggregate, the Producer/Supplier shall provide the Materials Engineer the total tons delivered to the project, the type of material and source, project number, and gradation results. District Materials will provide test reports to the project.

The following certification statement is required to be on the document used to certify the material being delivered (i.e. truck ticket, Form \#821278, etc.): "This is to certify the material herein described meets applicable contract specifications." NOTE: This certification statement shall be signed or initialed by an authorized representative of the aggregate supplier.

To ensure proper identification of delivered aggregates, the following additional information is required on the certification document:

Proportioned Aggregate

When the aggregate represented is for use in HMA or PCC mixtures, the project number is preferred when practical, as in the case when shipping to a single project paving plant site, and not required when impractical, as in the case when shipping into warehouse stock at a ready mix plant or when shipping to a plant supplying material to multiple projects.

PCC Aggregate: Gradation number, quantity, source name and T203 A-number, production beds (for quarried stones) and the delivery date.

HMA Aggregate: Product size, quantity, source name and T203 A-number, production beds (for quarried stones), and delivery date.

Non-proportioned Aggregate

lowa DOT gradation number, project number, quantity, source name and T203 A-number and the delivery date. NOTE: Documentation for revetment stones shall include production beds.

Recycled Aggregate Materials

lowa DOT gradation number, project number, quantity, source name and the delivery date. NOTE: A T203 A-number is not required for Recycled plants.

REHANDLING OF CERTIFIED AGGREGATES

When certified aggregates are rehandled the District Materials Engineer shall be notified and afforded the opportunity to monitor the re-handling procedure.

For the purpose of this IM , re-handling is meant to include the physical unloading and reloading of aggregate at a temporary storage site before the aggregate is delivered to its final destination. Rehandled certified aggregates may be required to be re-tested, with or without re-weighing and recertified on a numbered shipment ticket with proper identification and certification statement.

ACCEPTANCE

At the Contractor's and Producer's own risk, aggregates may be certified for project use before quality sample test results are reported based on the following:

- Complying Quality Control and Verification gradations
- Documentation of consistent previous compliance to specified quality requirements from the source or ledge.

A. Proportioned Aggregate

In the case of HMA or PCC proportioned aggregates, acceptance tests will be performed on verification samples obtained at the proportioning plant.

Certified proportioned aggregate may be incorporated into a project on the basis of the certified truck ticket, certified bill of lading, shipment listing, certified transfer listing or Certified Gradation Test Report (Form \#821278).

A file of certified shipment or transfer documents for the HMA or PCC proportioned aggregate will be maintained by the contractor or ready mix operator and made available for inspection at each plant or project site during the project period. Project inspection personnel shall verify that all material incorporated in the project is properly certified and document this verification and quantity on each of the appropriate daily or periodic construction reports. No other project documentation for the incorporated aggregate is required.
B. Non-Proportioned Aggregate

Acceptance of non-proportioned aggregates will be based on proper certification, visual examination by the contracting authority to ensure against obvious contamination or segregation, Producer quality control test results, and Agency verification test results.

Minor quantities of non-critical aggregates may be visually inspected by the contracting authority and recorded in the project field book. Quantities less than 200 Mg (ton) are considered minor. An example of a non-critical aggregate is a non-proportioned aggregate such as granular backfill material for bridge abutments.
C. Independent Assurance Program (IAP)

If Producer QC test results are used in the acceptance decision for non-proportioned aggregate, each certified technician who performs the QC sampling or testing and their test equipment will be independently checked by lowa DOT certified technicians (IAP personnel) as per Materials IM 205 at least once per year. IAP personnel must not be involved in gradation verification testing for the aggregate source being tested.

IAP personnel will witness the Producer technician taking a random sample and splitting that sample. The splits of the sample will be tested by the Producer's technician and by the lowa DOT District Laboratory. District Laboratory IAP testing equipment must not be the same equipment that is used for gradation verification for that source.

The results will be compared using IM 216. If acceptable correlation is not found, IAP personnel will contact the Producer's technician and review the results for the following:

1. Check for recording, weighing, or calculating errors.
2. Check to see that the balance is working correctly.
3. Check the sieves for damage or out of tolerance openings.
4. Check for overloading of sieves.
5. Check for incomplete sieving.
6. Resolve any problems, repeat the sampling, splitting, and observe the testing of a new sample.

The IAP results are not to be used in the acceptance decision for the material. Any noncomplying IAP results should result in a visit by the lowa DOT inspector responsible for verification testing at that location.

This method of IAP is called a System Approach and requires the lowa DOT to report a summary of the results annually to the FHWA. Document when the Producer's Technician was visited, which Producer's laboratory was used, the results, and any follow-up if required. This documentation should be retained in the event of an FHWA audit.

GUIDELINES FOR AGGREGATE PRODUCER QUALITY CONTROL PROGRAM

GENERAL

This appendix contains the minimum requirements for the producer Quality Control Program in order to become an approved aggregate producer.

Producers must submit a written application to their District Materials Engineer (DME) for review and approval.

Quality Control Programs for recyclers will describe procedures for receiving, sorting and managing stockpiles of reclaimed materials intended to be processed into certified aggregates.

NOTE: Producers with operations in more than one District shall apply to the District Materials Engineer in the district where the most certified material production exists or is anticipated. The application is attached to this Appendix or is available on-line through the lowa DOT web page. This application is also available from the DME Offices and the lowa Limestone Producers Association (ILPA) office.

DEFINITIONS

The following definitions apply to the Quality Control Program guidelines:
Source - Any location aggregate is produced at or shipped from on a certified basis (e.g., quarries, pits, project sites, recycle yards, terminal locations, portable production operation, etc.).

Conditional Status - This is a written notice from the District Materials Engineer to a producer that certified aggregates will no longer be accepted from a particular source. Application of Conditional Status may vary depending upon situation or specific circumstances. The Conditional Status may apply only to a production operation and aggregate produced by that operation. In other situations, when the deficiency is more widespread, the Conditional Status may apply to an entire company or division within a company until the problem is resolved. In the case of portable production operations, Conditional Status shall apply to the specific production operation regardless of source location, and shipment of aggregate previously produced by the affected production operation may be placed on Conditional Status when warranted.

GUIDELINES FOR AGGREGATE PRODUCER QUALITY CONTROL PROGRAM

1. Aggregate Certification

The producer has the overall responsibility of certifying that material being placed in the certified stockpile is produced under and conforms to the Aggregate Certification Program, and the producer Quality Control (QC) Program. The Iowa DOT, through its monitoring activities (sampling/testing, visual observation, etc.), will verify the continued compliance to the program.
2. Knowledge of Current Specifications

The producer Quality Control representative(s) must maintain up-to-date knowledge of the specifications that apply to aggregate products currently being produced at the source. The
producer representative shall have available, at the testing lab, a copy of the current Standard Specifications, all applicable Supplemental Specifications and all applicable Instructional Memorandums (IMs) for aggregate inspection, as well as a current geological section, if applicable. The producer will be aware of any Special Provisions, which change current aggregate specifications. This applies to both quality and gradation requirements. The producer shall be responsible for providing these up-to-date publications to their QC representative.
3. Plant Production Log

The producer is required to maintain a plant production log when producing under the program. This production log shall detail, on a daily basis, samples taken, pass/fail results, corrective actions, plant/ledge changes, etc. The log must be kept at a designated location and be readily available to the lowa DOT representative for review.
4. Visual Inspection

The producer is responsible for visually inspecting the aggregate source process on a frequent basis. Visual inspection can be defined as observing the processing or production area, as well as the condition of the aggregate in the flow stream or stockpiles. This visual inspection does not take away from actual testing, but enhances the inspection to ensure quality aggregates. It is the responsibility of the producer Quality Control representative to observe the overall operation to detect segregation, degradation, and contamination that are detrimental to the quality of the product.
5. Quality Requirements

Any certified stockpile must meet the designated quality before shipment. The producer is responsible for supplying material meeting all quality requirements. Intentional shipment of untested or out of specification material will constitute grounds for immediate rejection of material and placement of the source and/or the producer on conditional status. The producer Quality Control representative will obtain and maintain quality information on specific ledges, production methods, and certified stockpiles for each source.
6. Production Notification

Twenty-four hours before startup or as soon as possible for production change, the appropriate Area Materials Coordinator (AMC) or District Materials Engineer (DME) shall be notified. Failure to notify may result in material rejection or resampling of the stockpile. Notification shall include the estimated intended tonnage to be produced, estimated daily production rate, intended use (e.g., project information or warehouse stock), and if applicable, production ledges, and responsible person(s).
7. Production
A. The producer shall establish gradation production limits for each material to be certified to help ensure a product that is uniformly graded and meets specifications at the time of use.

1. Gradation production limits shall apply to individual products within each source and be
maintained for each stockpile.
2. Gradation production limits are subject to review, only, by the AMC or DME.
3. Repeated non-adherence to the producer established gradation production limits require stockpile sampling and testing by the producer.
B. Testing and Reporting
4. Minimum test frequencies as per IM 209, Appendix C
5. Test results will be known before delivery when the product is being shipped to a project.
6. All test results will be available at a designated location within 24 hours of sampling when the material is being placed into a certified stockpile.
7. Report gradation test results to DME and contractor, when applicable, on Form \#821278.
C. Maintaining Ongoing Quality Control Procedures
8. Proper ledge control and/or control of stockpiles of reclaimed PCC and HMA intended for recycling into certified aggregates.
9. Equipment (production and testing)
10. Stockpiling procedures
11. Proper stockpile identification (signing, stockpile maps, etc., as required).
12. Delivery
A. Stockpile identification to ensure delivery from proper stockpiles
B. Visual inspection for contamination, segregation, etc.
C. Stockpile gradation resampling may be required.
D. Proper identification and certification of delivered aggregate as per IM 209
E. Maintain ongoing QC procedures.
F. Report tonnage to the AMC when requested.
13. Quality Control Structure

In order to ensure quality as a priority, the producer Quality Control personnel will have a line of communication directly to their management, as well as their production operation.

AGGREGATE PRODUCER APPROVAL APPLICATION

Company Name

Address

(IF MORE THAN ONE; i.e., Regional Offices, etc., PLEASE ATTACH LIST AND AREA COVERED.)

1. Are copies of current applicable specifications, aggregate testing IMs and source information data such as geologic sections available at the respective sources or testing facilities? (Yes or No) If No, explain.
2. Is a plant production log maintained on a daily basis and available for inspection? (Yes or No) If No, explain
3. Who (position) is responsible for production notification to the Area Materials Coordinator?
4. Which company representative (position) is normally responsible for daily overall Quality Control processes at the source?
5. Describe the certified stockpile identification system in place at each source (Map, signing, etc.)
6. Please attach a detailed summary of your Quality Control Program. (NOTE: Please refer to Guidelines for Required Aggregate Producer Quality Control Program.)
7. Please attach a flow chart of your current Quality Control structure (Include names, addresses, phone numbers of appropriate management personnel, chain of command, etc., for problem resolution).

Indicate the District(s) for which you have operations to produce State of lowa Certified material.
$1 \square$

$5 \square$
$6 \square$

AUTHORIZED SIGNATURE \qquad DATE

DME RECOMMENDATIONS

DME SIGNATURE \qquad DATE

APPROVAL (YES or NO) REMARKS
CENTRAL MATERIALS SIGNATURE
DATE

APPROVED AGGREGATE PRODUCERS

This appendix lists the approved aggregate Producers.

PRODUCER

A-Line Crushing Service
Acme Fuel \& Materials Company
Aggregate Industries
Aggregate Materials Company
Aggregates, Inc.
Alliance Materials Inc.
Anderson Sand \& Gravel Company
Arcadia Limestone Company
Bard Concrete
BMC Aggregates L.C.
Bedrock Gravel Company
Bellco of Nebraska, Inc.
Bellevue Sand \& Gravel Company
Benton's Sand \& Gravel
Big Stones Quarry, Inc.
Boon Construction Company for Crosby Pit
Boyer Sand \& Rock, Inc.
Bridgeport Materials
Brockman Mgt., LLC, dba Brockman Sand Co.
Bruening Rock Products, Inc./Skyline Const., Inc.
Builders Sand \& Cement Company
Bushman Excavating
C.A.P Recycling
C.J. Moyna \& Sons, Inc.

Cantera Aggregates
Carnarvon Sand \& Gravel
Cemstone Products Company
Central Stone Company \#1
Cessford Construction Company

LOCATION

Cedar Falls, IA
Muscatine, IA
Eagan, MN
Dubuque, IA
Cedar Rapids, IA
Dixon, IL
De Witt, IA
Arcadia, IA
Dyersville, IA
Waterloo, IA
Schleswig, IA
Council Bluffs, IA
Bellevue, IA
Cedar Falls, IA
Peru, IA
Neillsville, WI
Hawarden, IA
Sergeant Bluff, IA
Ft. Madison, IA
Decorah, IA
Davenport, IA
Fairfax, IA
Sioux City, IA
Elkader, IA
Corydon, IA
Denison, IA
Mendota Heights, MN
Hannibal, MO
Burlington, IA

Cessford Construction Company
Cleveringa Excavating LLC
Cohrs Construction, Inc.
Concrete, Inc.
Concrete Materials
Conreco, Inc.
Coots Materials Company
Corell Recycling - A Div. of Corell Contractor, Inc.
County Materials Corp.
Crawford Quarry Company
Croell Redi Mix
Crushed Aggregate Products
Dave's Sand \& Gravel, Inc.
DeLong Recycling, Inc.
Des Moines Asphalt and Paving
Douds Stone, Inc.
Duininck Bros., Inc.

Elder Corp.

Falk, L. R. Construction Company
Falkstone LLC
Flewelling Sand \& Gravel
Floyd River Materials
Ft. Calhoun Stone Company
Fort Dodge Asphalt Company
Geo Tech Materials
Gehrke Quarries, Inc.
Gray Quarry, Inc.
Great River Materials, LLC
Greene Limestone Company
Grimes Asphalt \& Paving
Hahn Ready Mix
Hallett Materials
"Hank" Stalp Gravel Company

Le Grand, IA
Alton, IA
Spirit Lake, IA
Gifford, IA
Sioux Falls, SD
Omaha, NE
Vinton, IA
Des Moines, IA
Marathon, WI
Cedar Rapids, IA
New Hampton, IA
Red Oak, IA
Everly, IA
Washington, IA
Johnston, IA
Ottumwa, IA
Prinsburg, MN
Pleasant Hill, IA
St. Ansgar, IA
St Ansgar, IA
Moville, IA
Sioux City, IA
Blair, NE
Fort Dodge, IA
Douds, IA
Gifford, IA
Hamilton, IL
Burlington, IA
Charles City, IA
Grimes, IA
Muscatine, IA
Des Moines, IA
West Point, NE

Harsco Metals
Hawkeye Paving Corporation
Heartland Asphalt, Inc.
Heimes Excavating \& Utilities Co.
Higman Sand \& Gravel
Horsfield Materials, Inc.
Ideal Sand Co. aka Ideal Ready Mix Co., Inc.
lowa Drainage, Inc.
K\&L Construction
Knife River Midwest LLC
Kuhlman Construction Company
L.G. Everist, Inc.

L \& M Sand \& Gravel, Inc.
L \& W Quarries
LaHARV Construction Company, Inc.
Lessard Contracting, Inc.
Linwood Mining \& Minerals Corporation
Lounsbury
Lundell Construction Co., Inc.
Lyman-Richey Sand \& Gravel Company
Mallard Sand \& Gravel Company
Manatt's, Inc.
Manatt's Sand \& Gravel, Inc.
Marengo Ready Mix, Inc.
Martin Commercial Excavating
Martin Marietta Aggregates
Mass Custom Hauling \& Crushing
MatX, Inc.
McAlister Aggregates, LLC
Meller Excavating \& Asphalt, Inc.
Mielke's Quarry
Milestone Materials, Di. of Mathy Const. Company
Mobile Crushing \& Recycling, Inc.
Mohr Sand, Gravel \& Construction, LLC

Muscatine, IA
Bettendorf, IA
Mason City, IA
Omaha, NE
Akron, IA
Epworth, IA
West Burlington, IA
Sheffield, IA
Sergeant Bluff, IA
Stratford, IA
Colesburg, IA
Sioux Falls, SD
LeMars, IA
Centerville, IA
Forest City, IA
Sergeant Bluff, IA
Davenport, IA
West Des Moines, IA
Storm Lake, IA
Omaha, NE
Valley, NE
Brooklyn, IA
Tama, IA
Marengo, IA
Davenport, IA
Des Moines, IA
Milan, IL
Colorado Springs, CO
Bayard, IA
Fort Madison, IA
McGregor, IA
Onalaska, WI
Otho, IA
Lohrville, IA

Myrl \& Roy's Paving, Inc.
Nelstar
New Ulm Quartzite Quarries, Inc.
Norris Aggregates Company
North Iowa Sand \& Gravel, Inc.
Northwest Illinois Construction LLC
Northwest Materials
NorthWest Ready-Mix Concrete, Inc.
NUAggregates
Ortonville Stone Company
PBI Construction
Patrick M. Pinney Contractors, Inc.
Paul Niemann Construction Company
Pella Construction Company Ltd.
Persinger Sand \& Gravel
Peru Quarry Inc.
Peterson Contractors, Inc.
Pettengill Concrete \& Gravel
Pierce Sand
PNB Processors, LLC
Prairie Sand \& Gravel
Preston Ready Mix Corporation
Quality Concrete Company
Rainbow Quarry LLC
Randall Transit Mix Company
Recycled Aggregate Products Company
Red Rock Quarry
Reding's Gravel \& Excavating Co.
Reilly Construction Company, Inc.
Riehm Construction Company, Inc.
River City Stone - Di. of Mathy Construction Company
Riverstone Group, Inc.
River Products Company, Inc.
Rock Hard Concrete Recycling Inc.

Sioux Falls, SD
Meriden, IA
New Ulm, MN
Cameron, MO
Mason City, IA
Rock Falls, IL
Fort Dodge, IA
Ocheyedan, IA
Akron, IA
Ortonville, MN
Marcus, IA
Sioux City, IA
Sumner, IA
Pella, IA
Smithland, IA
Peru, IA
Reinbeck, IA
Rock Rapids, IA
Stanberry, MO
Denmark, IA
Prairie Du Chien, WI
Preston, IA
Clinton, IA
Monona, IA
Northwood, IA
Sioux City, IA
Sanborn, MN
Algona, IA
Ossian, IA
Waukon, IA
Keiler, WI
Moline, IL
lowa City, IA
West Branch, IA

Rocky Mountain Enterprises, Inc.
S \& A Construction, LTD
S \& G Materials
Savanna Quarry, Inc.
Schildberg Construction Company, Inc.
Schmillen Construction, Inc.
Shipley Contracting
Sieh Sand and Gravel
Southern Minnesota Construction Company, Inc.
Spencer Quarries
Stensland Gravel Company
Sterzinger Crushing, Inc.
Stoner Sand
Stratford Gravel, Inc.
Strong Rock \& Gravel
Swan Rock \& Sand Products, LLC
Tiefenthaler Ag-Lime Inc.
Tri City Blacktop
Tri Star Quarries
Tube City IMS Corp.
Ulland Brothers, Inc.
United Contractors, Inc.
Valley Sand \& Gravel Co.
Weatherton Contracting Co., Inc.
Weber Stone Company, Inc.
Welden Aggregates, Inc.
Wendling Quarries, Inc.
West Des Moines Sand
Western Engineering Company
Wetherell Sand \& Gravel
Wiltgen Construction Company
Winn Corporation Sand \& Gravel
Wright Materials Company
Zupke Sand \& Gravel

Athens, WI
Allendale, MO
Iowa City, IA
Savanna, IL
Greenfield, IA
Marcus, IA
Fort Madison, IA
Spencer, IA
Fairmont, MN
Spencer, SD
Larchwood, IA
Taunton, MN
Ridgeway, MO
Dayton, IA
Lansing, IA
Eddyville, IA
Breda, IA
Bettendorf, IA
Plano, IA
Wilton, IA
Albert Lea, MN
Grimes, IA
Rock Valley, IA
Beresford, SD
Anamosa, IA
Iowa Falls, IA
De Witt, IA
Des Moines, IA
Harlan, IA
Peterson, IA
Calmar, IA
Ollie, IA
Belmond, IA
Randalia, IA

October 21, 2014		AGGREGATE SPECIFICATION LIMITS \& SAMPLING AND TESTING GUIDE (See Specifications for Complete Details.)											Matls. IM 209
TEST LIMITS	Spec \#	$\begin{gathered} \text { F\& } \mathrm{A}^{2} \end{gathered}$	$\begin{gathered} \mathrm{F} \& \mathrm{~T} \\ \mathrm{C} \end{gathered}$	LA Abrasion	Absorption	Chert	Shale	Clay Lumps	Plastic Index	Mortar Strength	$\mathrm{Al}_{2} \mathrm{O}_{3}$ Limit	Pore Index	Gradation Number
Fine Aggregate for PCC													
PCC	4110	Note: Maximum 40\% between sieves Note: The fineness modulus must be no lower than 2.60. A target fineness modulus (or base-line) will be established for each source for continued approval. Note: Shale + Coal not to exceed 2% max.											
PCC, Class L	4111	Note: Note: Note:	y from ximu $\text { ale }+\mathrm{c}$	approved P 45% betw al not to ex	C sources. een sieves ceed 2\%max			fineness	modulus	no lower th			1
Intermediate Aggregate for PCC													
Crushed Stone and Gravel	4112	6 Note:	Pea	ravel see T	ble 4112.03	2 for max	mum all	$\begin{gathered} 0.5 \\ \text { owable obj } \end{gathered}$	ectionabl	materials	0.5		2
Coarse Aggregate for PCC													
Crushed Stone -Structural -Nonstructural		$\begin{array}{r} 6 \\ 6 \\ \text { Note: } \\ \hline \end{array}$	4115	50 50 2 for maxi	um allowab	$\begin{gathered} 2 \\ 3 \\ \text { e objectic } \end{gathered}$	1 1 1 nable m	$\begin{array}{r} 0.5 \\ 0.5 \\ \text { aterials. } \end{array}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 3-5 \\ & 3-5 \end{aligned}$
Gravel -Structural -Nonstructural	4115	$\begin{array}{r} 6 \\ 6 \\ \text { Note: } \\ \hline \end{array}$	4115	35 35 2 for maxi	um allowab	$\begin{gathered} 2 \\ 3 \\ \text { e objectic } \\ \hline \end{gathered}$	1 1 nable m	$\begin{array}{r} 0.5 \\ 0.5 \\ \text { terials. } \end{array}$					$\begin{aligned} & 3-5 \\ & 3-5 \end{aligned}$
Bridge Deck -Surfacing, Repair \& Overlay		6 40 2.5 0.5 Note: Unsound Chert+Shale+Coal+lron not to exceed 1% 0.4 6 Note: Unsound Chert particles are defined in 4115.02.											

AGGREGATE SPECIFICATION LIMITS \& SAMPLING AND TESTING GUIDE October 21, 2014 (See Specifications for Complete Details.) Supersedes October 15, 2013													
TEST LIMITS	Spec \#	$\begin{gathered} \text { F \& T } \\ \text { A } \end{gathered}$	$\begin{gathered} \mathrm{F} \& \mathrm{~T} \\ \mathrm{C} \end{gathered}$	LA Abrasion	Absorption	Chert	Shale	Clay Lumps	Plastic Index	Mortar Strength	$\mathrm{Al}_{2} \mathrm{O}_{3}$ Limit	Pore Index	Gradation Number
Class V Aggregate													
Note: Coarse Aggregates as in 4115 (except abrasion) and Fine Aggregates as in 4110.													
Combination of Materials With Class V													
Coarse Limestone Limestone Screenings													
		Note: S Note: A Note:		for cement mestone from the require	equirements sources me ments of 411	ting the and be	pecified nly from	coarse a sources	gregate cceptable	urability cla as coarse	for PC ggregat		8
Pipe Bedding for PCC													
Aggregate	4118.02	Note: >	15	50 Grave	or Crushed	tone. Cr	shed PC	C may be	used if ap	proved by	Engin		3
Pipe Backfill Aggregate	4119.02	Note: >	15	45	or Crushed	tone. Crus	shed PC	C may be	used if ap	proved by	Engin		10,11
Granular Surfacing													
Aggregate for Granular Shoulders	4120.02												Per 4120.02
Note: Requirements are equivalent to $4120.04,4120.05$ or 4120.06 .													
Class C Gravel	4120.03	Note: Percent of Clay Lumps + percent passing \#200 sieve not to exceed 15%. Note: Percent of Clay Lumps + percent of (+4) shale + percent passing \#200 not to exceed 20\%.											
Class A Crushed Stone	4120.04	Note: For shoulders only; material with $\mathrm{Al}_{2} \mathrm{O}_{3}$ not exceeding 0.7 or A-freeze not exceeding 10 may have an abrasion Stone maximum of 55 .											
Class B Crushed Stone	4120.05	Note: "C" Freeze + Abrasion not to exceed 65\%											
Class D Crushed Stone 4120.06 Note: "C" Freeze, Abrasion, and Gradation to be specified by Contract Documents.													
Paved Shoulders Fillets	4120.07	Note:	15 erial	45 $\mathrm{Al}_{2} \mathrm{O}_{3}$ no	exceeding 0	or A-fr	ze not	4	0 may	ve an abr		um of	11

October 21, 2014
Supersedes April 15, 2014
AGGREGATE GRADATION TABLE - ENGLISH

Grad.	Section No.	Std. Sieve Size	11/2"	1"	3/4"	1/2"	3/8"	\#4	\#8	\#30	\#50	\#100	\#200	
No.		Intended Use	Percent Passing											*Notes
1	4110,4125, 4133	PCC FA Cover Agg.					100	90-100	70-100	10-60			0-1.5	1
2	4112	PCC Intermediate				95-100			0-10					
3	4115 (57, 2-8), 4118	PCC CA	100	95-100		25-60		0-10	0-5				0-1.5	2,10
4	4115 (2-8)	PCC CA	100	50-100	30-100	20-75	5-55	0-10	0-5				0-1.5	10
5	4115 (67, 2-8)	PCC CA		100	90-100		20-55	0-10	0-5				0-1.5	10
6	4115.05 (Repair \& Overlay)	PCC CA			100	97-100	40-90	0-30					0-1.5	10
7	4117 (Class V)	PCC FA \& CA	100					80-92	60-75	20-40				
8	4117.03 (Class V)	Fine Limestone					100	90-100					0-30	
10	$\begin{gathered} \text { 4120.02, } 4120.03,4119 \\ \text { (C Gravel) } \\ \hline \end{gathered}$	Granular Surface			100			50-80	25-60					3,11
11	$\begin{gathered} 4120.02,4120.04 \\ 4120.05,4120.07,4119 \\ \text { (A, B, Cr. St.) } \\ \hline \end{gathered}$	Granular Surface \& Shoulder		100	95-100	70-90		30-55	15-40				6-16	4, 5, 11
12a	4121 (Cr. St.)	Granular Subbase	100			40-80			5-25				0-6	6,11
12b	4121 (Cr. Gravel)	Granular Subbase	100			50-80			10-30		5-15		3-7	7,11
13	4122.02 (Cr. St.)	Macadam St. Base	3" nominal maximum size - screened over 3/4" or 1" screen											
14	4123	Modified Subbase	100		70-90				10-40				3-10	5, 7, 11
19	$\begin{gathered} 4125 \text { (1/2" Cr. Gr. } \\ \text { or Cr. St.) } \end{gathered}$	Cover Aggregate			100	97-100	40-90	0-30	0-15				0-2	11
20	4125 (1/2" Scr. Gr.)	Cover Aggregate			100	95-100	40-80	0-15	0-7				0-1.5	11
21	4125 (3/8")	Cover Aggregate				100	90-100	10-55	0-20	0-7			0-1.5	11
22	4124.02	Fine Slurry Mixture					100	85-100	40-95	20-60	14-35	10-25	5-25	9,11
23	4124.02 (Cr. St.)	Coarse Slurry Mixture					100	70-90	40-70	19-42			5-15	11
29	4131	Porous Backfill			100	95-100	50-100	0-50	0-8					11
30	4132.02 (Cr. St.)	Special Backfill	100						10-40				0-10	5,11
31	4132.03 (Gravel)	Special Backfill		100	90-100	75-100			30-55				3-7	11
32	4133 (Sand/Gr./Cr. St.)	Granular Backfill	100\% passing the 3" screen						10-100				0-10	8, 11
35	4134 (Natural Sand/Gr.)	Floodable Backfill	100						20-90				0-4	11
36	4134 (Natural Sand)	Floodable Backfill						100					0-2	11
Notes: (Gradations Nos. 9, 15, 16, 17, 18, 24, 25, 26, 27, 28, 33 and 34 have been deleted.)														

Matls. IM 209
Appendix D

1.	For Section 4110 , when the fine aggregate is sieved through the following numbered sieves - 4, 8, 16, 30, 50, and $100-$ not more than 40% shall pass one sieve and be sieve with the next higher number.
2.	When used in precast and prestressed concrete bridge beams, 100% shall pass the 1 " sieve. When used for pipe bedding the No. 200 restriction does not apply.
3.	When compaction of material is a specification requirement, the minimum percent passing the No. 200 sieve is 6%. When used as trench backill, must be a minimum 75% crushed gravel.
4.	See specifications for combination of gravel and limestone.
5.	Unwashed air-dried samples of crushed composite material shall be tested for gradation compliance except that no gradation determination will be made for material pa sieve.
6.	The gradation requirement for the No. 8 sieve shall be 5% to 20% when recycled material is supplied.
7.	For Section 4121 gravel, one fractured face on 30% or more of the particles retained on the $3 / 8$-inch sieve. For Section 4123 gravel, one fractured face on 75% or more retained on the $3 / 8$-inch sieve.
8.	Crushed stone shall have 100% passing the 1.5 " sieve.
9.	Gradation limitations for the 30,50 and 100 sieves shall not apply when slurry mixture is applied by hand lutes, such as for slurry leveling.
10.	Maximum of 2.5% passing the No. 200 sieve allowed for crushed limestone or dolomite when documented production is 1% or less. For the production of PCC coarse a limestone or dolomite ledges, dry screening is not permitted.
11.	When Producer gradation test results are used for acceptance, test results representing at least 90% of the material being produced shall be within the gradation limits gradation results shall be within the gradations limits. Stockpiled material not meeting the criteria may, at the District Materials Engineer's discretion, be resampled using procedures. One hundred percent of the stockpile quality control and verification test results shall be within the gradation limits.

****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.*

NOTIFICATION OF IM 209 VIOLATION

This appendix contains the Notification of Violations of the Approved Producer's Quality Control Program.

This is a written notice from the District Materials Coordinator or District Materials Engineer to a producer identifying violation(s) of the Producer's Quality Control Program or requirements of the Approved Producer Program (Office of Materials IM 209).

A written response is required from the Producer describing how the violation occurred, how the violation will be rectified, and what will be done so the violation will not occur or continue to occur in the future. After the written response is received, grounds for Conditional Status will be determined. Conditional Status requires that certified aggregates will no longer be accepted from a particular source. The Conditional Status may apply only to a production operation and aggregate produced by that operation. In other situations, when the deficiency is more widespread, the Conditional Status may apply to an entire company or division within a company until the problem is resolved. See Office of Materials IM 209, Appendix A for details. If the Notification of Violation is found to be in error, the Notification will be rescinded. Written responses should be sent to the District Materials Office and the Geology Section of the Central Materials Laboratory.

Producer Name \qquad
Source (include A-number) \qquad
Date(s) of violation \qquad
Nature of Violation (Circle all that apply)

1. Aggregate Certification
2. Knowledge of Current Specifications
3. Plant Production Log
4. Visual Inspection
5. Quality Requirements
6. Production Notification
7. Production
8. Delivery (Unapproved Materials)
9. Quality Control Structure
10. Other

Additional details (attach a separate document if more space is needed):

IOWA DOT SIGNATURE

\qquad DATE \qquad
Copies to: District Materials Office
Geology Section, Central Materials Laboratory

THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.*

DISTRICT MATERIALS DUTIES

This appendix contains District Materials aggregate duties.

- Monitor producer/supplier compliance to the respective Approved Producer Quality Control Program.
- Confirm that material is being produced from the intended ledge.
- Confirm that unprocessed reclaimed pavement is sorted for the intended recycled product.
- Review requirements of source approvals for particular production ledges or depths and processing methods.
- Review sample locations and methods.
- Review Q/C tests:
- test results
- frequencies
- reporting
- Visual inspection of stockpiles:
- Condition of base
- Segregation
- Contamination
- Degradation
- Load-out
- Product identification
- Production verification samples:
- Gradation (one of the following methods)
- Independent sample by District Materials
- Witness Q/C technician obtain production verification sample
- For revetment, erosion stone and macadam base, verification will be based on visual inspection
- Quality samples will be obtained by District Materials.
- District Materials will take possession of all production verification samples.
- District Materials will make production verification test results available to the producer.
- Non-complying production verification test results.
- Notify the producer.
- Investigate the stockpile, for acceptance, in accord with written evaluation method IM 301 or as directed by the District Materials Engineer.
- Review producer certification of aggregates, including compliance of certification documents in accord with IM 209.

APPLICATION FOR APPROVAL OF ELECTRONIC SIGNATURE

This appendix contains the Application for Approval of Electronic Signature for Certification of Materials and Weights.

From:
Name of Weighmaster
Via:
Name of Company Officer / Company Name
To: District Materials Engineer, Iowa DOT Geology Section, Office of Construction and Materials, Iowa DOT

Subj: Electronic Signature Authority for Certifying Truck Tickets

1. I have read Federal Code 1020 and lowa Code 714.8 (following this document) and am aware of the potential penalties for fraud and knowingly tendering a false certification. I will not knowingly cause or create a false document nor allow others access to my password that would allow them to certify materials. I am also aware of the provisions authorizing secure electronic signature per IM. 209 Appendix G.
2. My Secure Electronic Signature Authority is granted to me by the lowa DOT Office of Construction and Materials and represents the authorization by the company officer to certify materials for the company for whom I am employed. Should I terminate employment, this signature authority shall be revoked. Violations of these Codes shall be cause for revocation of this authority.

Signature and Date of Weighmaster acknowledging review of Codes.
\qquad
Attach a Sample of Secure Electronic Signature
Authorization to Certify on behalf of the Company: Signature and Date of Company Officer, Title, Date.
\qquad TITLE \qquad DATE \qquad
Signature and Date of Iowa DOT District Materials Engineer
IOWA DOT SIGNATURE \qquad DATE \qquad

Signature and Date of Electronic Signature Authorization: Iowa DOT Office of Construction and Materials
IOWA DOT SIGNATURE \qquad DATE \qquad
Copies to: District Materials Office
Geology Section, Central Materials Laboratory

Iowa DOT requirements are based on lowa Code Section 554(C) Superseded by 554(D) Secure Electronic Signature.

1. Subject to the provisions of section 554C. 303 and 554(D), if, by the application of a qualified security procedure, it can be authenticated that an electronic signature is the signature of a specific person, the electronic signature shall be considered to be a secure electronic signature at the time of verification.
2. A qualified security procedure for purposes of this section is a security procedure for identifying a party that meets the following:
A. Authorized by, and implemented in accordance with the requirements of IM 209 Appendix G.
B. Previously agreed to by the parties to an agreement and implemented in accordance with the terms of the agreement.
C. Authorized by the responsible Company Officer to act on behalf of the Company and being capable of creating a secure electronic signature that meets all of the following conditions:
(1) Is unique to the signer within the context in which it is used.
(2) Can be used to promptly, objectively, and automatically identify the person signing the electronic record.
(3) Is password protected and assignable to only that person with the authority given by the Company Officer.
(4) Was reliably created by such identified person.
(5) Is linked to the electronic record to which it relates in a manner which ensures that if the record or signature is changed the electronic signature is invalidated, provided that the security procedure is implemented in a manner required by the certification.
(6) Acceptable security systems shall meet the provisions of NTEP or NIST Handbook 44.

Crimes and Criminal Procedure 18 USC Section 1020

1020. Highway projects

Whoever, being an officer, agent, or employee of the United States, or of any State or Territory, or whoever, whether a person, association, firm, or corporation, knowingly makes any false statement, false representation, or false report as to the character, quality, quantity, or cost of the material used or to be used, or the quantity or quality of the work performed or to be performed, or the costs thereof in connection with the submission of plans, maps, specifications, contracts, or costs of construction of any highway or related project submitted for approval to the Secretary of Transportation; or
Whoever knowingly makes any false statement, false representation, false report, or false claim with respect to the character, quality, quantity, or cost of any work performed or to be performed, or materials furnished or to be furnished, in connection with the construction of any highway or related project approved by the Secretary of Transportation; or
Whoever knowingly makes any false statement or false representation as to a material fact in any statement, certificate, or report submitted pursuant to the provisions of the Federal-Aid Road Act approved July 11, 1916 (39 Stat. 355), as amended and supplemented,
Shall be fined under this title or imprisoned not more than five years, or both.

Iowa Code Section 714.8 Fraudulent practices defined.

A person who does any of the following acts is guilty of a fraudulent practice:

1. Makes, tenders, or keeps for sale any warehouse receipt, bill of lading, or any other instrument purporting to represent any right to goods, with knowledge that the goods represented by such instrument do not exist.
2. Knowingly attaches or alters any label to any goods offered or kept for sale so as to materially misrepresent the quality or quantity of such goods, or the maker or source of such goods.
3. Knowingly executes or tenders a false certification under penalty of perjury, false affidavit, or false certificate, if the certification, affidavit, or certificate is required by law or given in support of a claim for compensation, indemnification, restitution, or other payment.
4. Makes any entry in or alteration of any public records, or any records of any corporation, partnership, or other business enterprise or nonprofit enterprise, knowing the same to be false.
5. Removes, alters or defaces any serial or other identification number, or any owners' identification mark, from any property not the person's own.
6. For the purpose of soliciting assistance, contributions, or other thing of value, falsely represent oneself to be a veteran of the armed forces of the United States, or a member of any fraternal, religious, charitable, or veteran's organization, or any pretended organization of a similar nature, or to be acting on behalf of such person or organization.
7. Manufactures, sells, or keeps for sale any token or device suitable for the operation of a coinoperated device or vending machine, with the intent that such token or device may be so used, or with the representation that they can be so used; provided, that the owner or operator of any coin-operated device or vending machine may sell slugs or tokens for use in the person's own devices.
8. Manufactures or possesses any false or counterfeit label, with the intent that it is placed on merchandise to falsely identify its origin or quality, or who sells any such false or counterfeit label with the representation that it may be so used.
9. Alters or renders inoperative or inaccurate any meter or measuring device used in determining the value of or compensation for the purchase, use or enjoyment of property, with the intent to defraud any person.
10. Does any act expressly declared to be a fraudulent practice by any other section of the Code.
11. Removes, defaces, covers, alters, or destroys any component part number as defined in section 321.1, vehicle identification number as defined in section 321.1, or product identification number as defined in section 321.1, for the purpose of concealing or misrepresenting the identity or year of manufacture of the component part or vehicle.
12. Knowingly transfers or assigns a legal or equitable interest in property, as defined in section 702.14, for less than fair consideration, with the intent to obtain public assistance under chapters 16, 35B, 35D, and 347B, or Title VI, subtitles 2 through 6, or accepts a transfer of or an assignment of a legal or equitable interest in property, as defined in section 702.14, for less than fair consideration, with the intent of enabling the party transferring the property to obtain public assistance under chapters 16, 35B, 35D, and 347B, or Title VI, subtitles 2 through 6 . A transfer or assignment of property for less than fair consideration within one year prior to an application for public assistance benefits shall be evidence of intent to transfer or assign the
property in order to obtain public assistance for which a person is not eligible by reason of the amount of the person's assets. If a person is found guilty of a fraudulent practice in the transfer or assignment of property under this subsection the maximum sentence shall be the penalty established for a serious misdemeanor and sections $714.9,714.10$ and 714.11 shall not apply.
13. Fraudulent practices in connection with targeted small business programs.
a. Knowingly transfers or assigns assets, ownership, or equitable interest in property of a business to a woman or minority person primarily for the purpose of obtaining benefits under targeted small business programs if the transferor would otherwise not be qualified for such programs.
b. Solicits and is awarded a state contract on behalf of a targeted small business for the purpose of transferring the contract to another for a percentage if the person transferring or intending to transfer the work had no intention of performing the work.
c. Knowingly falsifying information on an application for the purpose of obtaining benefits under targeted small business programs.

A violation under this subsection is grounds for decertification of the targeted small business connected with the violation. Decertification shall be in addition to any penalty otherwise authorized by this section.
14. Makes payment pursuant to an agreement with a dealer or market agency for livestock held by the dealer or market agency by use of a financial instrument which is a check, share draft, draft, or written order on any financial institution, as defined in section 203C.1, if after seven days from the date that possession of the livestock is transferred pursuant to the purchase, the financial institution refuses payment on the instrument because of insufficient funds in the maker's account.

This subsection is not applicable if the maker pays the holder of the instrument the amount due on the instrument within one business day from a receipt of notice by certified mail from the holder that payment has been refused by the financial institution.

As used in this subsection, "dealer" means a person engaged in the business of buying or selling livestock, either on the person's own account, or as an employee or agent of a vendor or purchaser. "Market agency" means a person engaged in the business of buying or selling livestock on a commission basis.
15. Obtains or attempts to obtain the transfer of possession, control, or ownership, of the property of another by deception through communications conducted primarily by telephone and involving direct or implied claims that the other person contacted has won or is about to win a prize, or involving direct or implied claims that the other person contacted may be able to recover any losses suffered by such other person in connection with a prize promotion.
16. Knowingly provides false information to the treasurer of state when claiming, pursuant to section 556.19, an interest in unclaimed property held by the state, or knowingly provides false information to a person or fails to disclose the nature, value, and location of unclaimed property prior to entering into a contract to receive compensation to recover or assist in the recovery of property reported as unclaimed pursuant to section 556.11.
17. A packer who includes a confidentiality provision in a contract with a livestock seller in violation of section 202A.4.
18. Manufactures, creates, reproduces, alters, possesses, uses, transfers, or otherwise knowingly contributes to the production or use of a fraudulent retail sales receipt or universal price code label with intent to defraud another person engaged in the business of retailing.

For purposes of this subsection:
a. Retail sales receipt" means a document intended to evidence payment for goods or services.
b. Universal price code label" means the unique ten-digit bar code placed on the packaging of an item that may be used for purposes including but not limited to tracking inventory, maintaining price information in a computerized database, and serving as proof of purchase of a particular item.
19. A contractor who enforces a provision in a production contract that provides that information contained in the production contract is confidential as provided in section 202.3.

APPROVED ELECTRONIC SIGNATURES

This appendix contains the Approved Electronic Signature for Certification of Materials and Weights.

Weighmaster

Mary Worrell
Lori Henry
Nikki Hanna
Lisa George-Bacon
John Johnson
Ronda Hammes
Lisa Maher
Deb Gjerde
Theresa McMains
Robin Cass
Jennifer Stanley
Jeff Werden
Mary A. Green
Wesley Alertsen
Brenda Liles
Joel Tichy
Donna Hughes
Mark Haskell
Rex A. Gaskill
Viki Sauerman
Craig Groover
Diane Thomas
Joyce Davis
Daryl Scott
Cherene M Vote
Sandra Johnson
Brenda L. Benjamin
Michell Thilges
Tonya Holmes
Karen Ries
Aaron L. Conn
Linda Jones
Tammy Draper-Hansen
Coby Metz

Company Name

Martin Marietta
Martin Marietta
Martin Marietta
Martin Marietta
Hallett Materials
Martin Marietta

Jason Hinkle
Rick A. Burchard
Sandy Caskey
Mark Bowden
Danielle Fiorini
Jolene McMahon
Jo Ann Decker
Terri Day
Lyndsey Hartley
Hillerie Salat
Carrie Thompson
Debbie Veldhuizen
Cory Haupt

Martin Marietta
Martin Marietta
L.G. Everist, Inc.
L.G. Everist, Inc.

Martin Marietta
Higman Sand \&Gravel
Higman Sand \&Gravel
Martin Marietta
Martin Marietta
Martin Marietta
Martin Marietta
L.G. Everist, Inc.

Martin Marietta
I.M. 210

Production of Cert.
Aggregate from
Reclaimed Roadways

Iowa Department of Transportation

PRODUCTION OF CERTIFIED AGGREGATE FROM RECLAIMED ROADWAYS

GENERAL

This IM deals with requirements for furnishing certified aggregate produced from reclaimed materials.

The requirements of Office of Materials IM 209 (Certified Aggregates Approved Producer Program) also apply to the production of aggregate from reclaimed roadway materials.

Processing Requirements for Aggregates Produced from Reclaimed Materials

Notification to District Materials personnel of new production, as well as testing frequency, sampling, documentation, and acceptance of recycled materials, are the same as for virgin materials as outlined in IM 209. The District Materials Engineer shall be afforded the opportunity to witness the stockpiling of unprocessed recycled material.

Processing of reclaimed PCC, crushed composite pavement (CCP), and salvaged HMA (RAP) shall include a means of eliminating material other than PCC, RAP, or CCP in the finished product. This may be accomplished by pre-screening or other methods acceptable to the District Materials Engineer. Stockpiles contaminated with soil or excessive recycled fines may require processing using a grizzly at the time of delivery to the recycle yard or as directed by the District Materials Engineer. Figures 1 through 6 show examples of poor (unacceptable) and clean stockpiles.

Stockpiles contaminated with reinforcing steel, soil, or other material can be rejected upon visual inspection. The producer or contractor shall be informed immediately that the stockpile has been rejected. Recycled yards must have controlled access and delivered material shall be inspected prior to incorporation into unprocessed stockpiles.

Moving Crusher Recycling Operations (such as a Paradigm)

- If multiple crushers and screening plants are used, each plant's production must have its own Q/C and monitor gradation testing.
- Sampling and testing frequency needs to be in agreement between the Producer and DME before production.
- Sampling locations must be identified using stationing, GPS, or other accurate and reliable method.
- Material must be from a known aggregate source or the quality establish prior to incorporation.
- Material cannot be incorporated until the material is represented by a complying gradation test result.

Modified Subbase and Granular Subbase

These products require that the reclaimed material be identifiable and the following shall apply:
A. For Modified Subbase: recycled crushed PCC pavement or subbase, crushed composite pavement (CCP), and salvaged HMA (RAP) or HMA subbase can be reclaimed from an Interstate or Primary roadway pavement under the jurisdiction of the contracting authority and shall be certified based on gradation testing. If recycling subbase material, soil shall not be incorporated into the subbase. See: Modified Subbase Production, below.
B. For Granular Subbase: recycled crushed PCC pavement or subbase can be reclaimed from an Interstate or Primary roadway pavement under the jurisdiction of the contracting authority and shall be certified based on gradation testing. If recycling subbase material, soil shall not be incorporated into the subbase.
C. Recycled PCC roadway pavement or recycled composite roadway pavement obtained from secondary roads or municipal streets may be used (as described above) if the source of the aggregate is known and the PCC coarse aggregate durability is Class 2 or better and shall be certified based on gradation testing. The producer shall be responsible for documentation of the pavement source.
D. When the source or quality of the material from the secondary or municipal pavement is unknown, the material shall be certified based on quality requirements identified in the Standard Specifications for crushed stone for the aggregate being produced and gradation requirements for the aggregate product.

1. If the concrete originated from multiple locations, the crushed material from each location must be stockpiled in separate but homogeneous stockpiles.
2. Prior to certification and furnishing to projects, each stockpile must be readily identifiable, and have compliant results on applicable tests on samples taken from each of these stockpiles.
E. On secondary and municipal projects, recycled material can also be reclaimed from roadway pavement under the jurisdiction of the contracting authority and shall be certified based on gradation testing.

Modified Subbase Production

Some aggregate products allow the blending of RAP with virgin aggregate or crushed PCC. The virgin aggregate or crushed PCC shall meet the gradation and quality requirements of the
intended product before blending with RAP. HMA shall be processed into RAP, meeting the applicable nominal maximum size for the intended product before blending with other aggregate.

The addition of unprocessed HMA shall only be allowed if it is generated from a composite pavement or consistent base layer. Material from HMA shoulders may only be used for Special Backfill. Blending of RAP shall be accomplished by the use of belt feeders and bins equipped with adjustable gates or drive systems that can be calibrated and controlled. This is applicable to all permanent recycling operations as well as in-place recycling operations (such as the Paradigm). For Modified Subbase, the amount of recycled HMA shall not exceed 50%. RAP containing soil or other foreign material other than HMA will be considered contaminated and subject to rejection.

Granular Shoulders

Crushed recycled materials may total no more than 30% of the shoulder aggregate for new construction and no more than 50% of the total for existing granular shoulders. The intended proportions shall be provided to the District Materials Engineer at least 24 hours before the start of production. The District Materials Engineer shall be afforded the opportunity to witness the calibration of the blending equipment. The blending restrictions described in Modified Subbase also apply to Granular Shoulders.

Recycled PCC for Class D and Class E Revetment

Recycled PCC revetment must be reclaimed from Interstate or Primary roadway pavements or airport runways.

To meet the nominal top size of 250 pounds for Class D and Class E revetment, recycled PCC used for revetment must be 10 inches or greater in thickness. If the Engineer or project requires using riprap containing material larger than 250 pounds, recycled PCC will not meet the dimensional requirements of Section 4130.02. Recycled PCC will not meet the dimensional requirements for Class A, B, and C revetment.

Certified Aggregates Produced from Reclaimed Materials Delivery Documentation

As outlined in Materials IM 209: an lowa DOT gradation number, project number, quantity, source name and the delivery date. NOTE: A T203 A-number is not required for Recycled plants.

Figure 1. Recycled stockpile contaminated with steel.

Figure 2. Recycled stockpile contaminated with organic material.

Figure 3. Recycled stockpile with excessive fines.

Figure 4. Recycled stockpile contaminated with non-pavement material.

Figure 5. Example of a clean stockpile of recycled HMA.

Figure 6. Example of a clean stockpile of recycled PCC.
I.M. 213

Technical Training \& Certification Program

TECHNICAL TRAINING \& CERTIFICATION PROGRAM

GENERAL

The purpose of the Technical Training \& Certification Program is to ensure Quality Control (QC)/Quality Assurance (QA) and Acceptance of Aggregates, Hot Mix Asphalt (HMA), Portland Cement Concrete (PCC), Soils, Erosion Control, Precast and Prestressed Concrete, and Pavement Profiles and to ensure proper documentation of quality control/quality assurance and acceptance procedures and test results by industry and Contracting Authority personnel.

This Instructional Memorandum (IM) explains the requirements to become certified and to remain certified to perform inspection and testing in the State of lowa. This IM also describes the duties, responsibilities and the authority of persons assigned the position of Certified Technician in any of the above areas for construction or maintenance projects. Appendix C of this IM lists what tests and procedures the technician is qualified to perform for each level of certification they obtain.

Through a cooperative program of training, study, and examination, personnel of the construction industry, State DOT, and other Contracting Authorities will be able to provide quality management and certified inspection. Quality control/quality assurance and acceptance sampling, testing and inspection will be performed by certified personnel and documented in accordance with the IMs.

A technician who is qualified and holds a valid certification(s) shall perform quality control/quality assurance and acceptance at a production site, proportioning plant, or project site. Responsibilities cannot be delegated to non-certified technicians. The duties of a Certified Technician may be assigned to one or more additional Certified Technicians.

The Technical Training \& Certification Program will be carried out in accordance with general policy guidelines established or approved by the Highway Division Director. A Board of Certification composed of the following members will advise the Director:

Director - Office of Construction and Materials
Representative of District Materials Engineers**
Representative of District Construction Engineers**
Representative of Associated General Contractors (AGC of Iowa)
Representative of lowa Concrete Paving Association (ICPA)
Representative of Asphalt Paving Association of Iowa (APAI)
Representative of Iowa Ready Mixed Concrete Association (IRMCA)
Representative of lowa Limestone Producers Association (ILPA)
Representative of County Engineers
Coordinator of Technical Training \& Certification Program**
** Appointed by Program Director

The Director of the Office of Construction and Materials will be the Program Director. Coordinators will be appointed by the Program Director to assist in administration of the program and to handle such planning, administration, and coordinating functions as may be needed.

TRAINING

The lowa DOT will provide the training necessary to become certified or an agency approved by the Program Director. Producers/Contractors are encouraged to conduct their own pretraining program. A complete listing of training opportunities is available in the Technical Training \& Certification Program's Information and Registration Booklet or at the Technical Training \& Certification Program website, www.iowadot.gov/training/ttcp.html. The book is available at any of the lowa DOT Materials Offices.

CERTIFICATION REQUIREMENTS

1. A candidate must attend instruction and pass the examination(s) for all levels of certification prepared and presented by the Program Director or someone designated by the Program Director. If the new candidate fails the examination, they will have one opportunity to retake the examination. The retake must be completed within six months of the original exam. If they fail the retake of the examination, they will need to attend the training again before taking the examination the third time. If an individual is recertifying they will have only one opportunity to take the examination. If they fail the examination they must take the applicable training before retaking the examination.
2. All prerequisites shall be met before the applicant may attend the next level of training for the certification desired. A listing of certification levels and prerequisites is located in Appendix A.
3. Once the candidate has met all the criteria and has received certification, it is recommended the Certified Technician work under the supervision of an experienced technician until they become efficient in the inspection and testing methods they will be performing.

An individual requesting to become certified as a Precast/Prestress Concrete Technician is required to obtain forty hours of experience assisting in quality control inspection at an approved plant before certification will be issued. The experience must be documented and shall be approved by the District Construction and Materials Engineer. This experience must be completed within two years from the date the individual attended the training.
4. Registered Professional Engineers, engineering graduates, and geology graduates from accredited institutions will be exempt from the training requirement in the areas they have had instruction. In order to obtain certification for any technical level, these persons must pass all applicable tests for the level of certification they wish to obtain. All certificates issued in accordance with these requirements will be subject to the same regulations concerning expiration, recertification, etc., as applies to certificates obtained via training and examinations.

Out-of-state technicians will be issued certifications when the following criteria are met:

1. The applicant must be certified in another state or shall have received equivalent training, if the state does not have a certification program, in each level of certification they are requesting.
2. The applicant must pass an examination for each level of certification desired, which will be administered by the lowa Department of Transportation. Failure of the examination shall require the applicant to take the applicable schooling before they can retake the exam.
3. The applicant must follow the prerequisite requirements of the Technical Training \& Certification Program.

Out-of-state applications should be submitted to the District Materials Office closest to the home location of the applicant. Copies of all the applicant's certifications must accompany the application.

CERTIFICATION

Upon successfully completing the requirements for certification, the Program Director will issue a certificate and a pocket certification card. This certification is not transferable. A certification shall be valid for five years.

CERTIFICATION IDENTIFICATION

The certificate will contain letters that identify the District of record, the certificate holder, certification number, the level of certification, and the expiration date of each level.

The assigned certification number may change if the certificate holder changes their residence.

RENEWAL OF CERTIFICATION

A certification shall be valid through December $31^{\text {st }}$ of the fifth year. A 90-day grace period will be allowed. If the individual has not renewed their certification within the 90 -day grace period, they are automatically decertified. The individual may obtain certification by taking the examination for the level of certification they are requesting. If the individual does not take the examination within one year after their certification(s) expire, i.e., 12/31/expiration year, they must retake all applicable schooling and pass the examinations. If an applicant becomes decertified in any level of certification and that certification is a prerequisite for other levels of certification the applicant will also be decertified in those related levels of certification.

All certified technicians will be required to pass an examination in each level of certification they hold before recertification will be issued. Failure of any level shall require the applicant to retake the applicable schooling and pass the test.

The certificate holder shall be responsible for applying for certification renewal and for maintaining a current address on file with the appropriate District Materials Office.

Technicians certified as Level I HMA and/or Level II PCC shall attend a minimum of two update classes each in the five-year period between certification and each recertification. The lowa DOT or an agency or organization approved by the TTCP will hold these classes. These update classes will be listed in the Technical Training \& Certification Program Booklet and on the program website, or the certified technician may contact the lowa DOT for information. If an individual does not attend the two update classes required before their certification expires, they must take the entire schooling and pass the examination for the certification required.

The certified technician will not receive credit for the following:

1. More than one update per training season in each level of certification.
2. An update taken during the same training season in which the individual recertified.

UNSATISFACTORY PERFORMANCE NOTICE

A certified technician failing to perform the required specified duties or inadequately performing these duties, will receive an Unsatisfactory Notice (Office of Materials IM 213, Appendix B). The notice will be from the District Materials Engineer in the District where the failure occurred. This notice and all supporting documentation will be placed in the technician's permanent file with the District Materials Office in which the technician resides. The notice will also be placed on the statewide computer file. The notice will remain in their file for five years. The notice may be removed prior to the five years upon the recommendation of the District Materials Engineer.

SUSPENSION \& DECERTIFICATION

A technician receiving two Unsatisfactory Work Performance Notices for work performed under a specific certification will be given a three-month suspension of the applicable certification. Suspended technicians shall not perform any duties governed by the suspended certification, including any duties which require the suspended certification as a prerequisite.

Technicians are eligible to be reinstated after the three-month suspension and successful completion of the applicable recertification test(s).

Technicians are subject to decertification when they receive a third Unsatisfactory Performance Notice.

Certified Technicians will be decertified for any of the following reasons:
The certificate will become invalid for the following reasons:

1. Failure of the certificate holder to renew the certificate prior to regular expiration as described above.
2. Use of false or fraudulent information to secure or renew the certificate.
3. Use of false or fraudulent actions or documentation by the certificate holder.
4. Not performing tests and technician duties properly and in accordance to specifications.

Action will be effective on the date the Program Director issues the suspension or decertification notice.

Technicians that are decertified shall not perform any duties requiring certification. Technicians may request reinstatement after one year.

Appeals and reinstatement requests shall be submitted in writing to the Program Director. Appeals and reinstatement requests will be considered by the Certification Board.

If reinstatement is authorized, the applicant must attend and successfully complete the applicable certification courses.

FUNCTIONS \& RESPONSIBILITES

A certificate holder at each production site, project site, proportioning plant, or laboratory will perform duties. The certified technician shall perform quality control testing in accordance with specified frequencies and submit designated reports and records.

The specification requirement for materials testing by a certified technician does not change the supplier's responsibilities to furnish materials compliant with the specification requirements.

The District Materials Engineer and/or Project Engineer will be responsible for monitoring the sampling, testing, production inspection activities and quality control performed by the contractor. A monitor shall have satisfactorily completed the training and be certified for the level of technician they are monitoring.

The District Materials Engineer and/or Project Engineer will have authority and responsibility to question and where necessary, require changes in operations and quality control to ensure specification requirements are met.

QUALITY CONTROL, TESTING, \& DOCUMENTATION

The QC Technician shall be present whenever construction work related to production activity, such as stockpiling or other preparatory work, requires record development and/or documentation is in progress. The QC Technician's presence is normally required on a continuing basis beginning one or more days before plant operation begins and ending after plant shut down at the completion of the project. The work shall be performed in a timely manner and at the established frequencies.

The QC Technician's presence is not normally required during temporary plant shut downs caused by conditions, such as material shortages, equipment failures, or inclement weather.

All quality control activities and records shall be available and open for observation and review by representatives of the contracting authority.

Reports, records, and diaries developed during progress of construction activities will be filed as directed by the Contracting Authority and will become the property of the Contracting Authority.

Quality control activities, testing, and records will be monitored regularly by Contracting Authority representatives. The Project Engineer or District Materials Engineer will assign personnel for this function.

Monitor activities will be reported and filed at prescribed intervals with the Project Engineer, District Materials Engineer, producer, contractor, and the contractor's designated producer.

At no time will the monitor inspector issue directions to the contractor, or to the QC Technician. However, the monitor inspector will have the authority and responsibility to question, and where necessary, reject any operation or completed product, which is not in compliance with contract requirements.

ACCEPTANCE

Completed work will be accepted on the basis of specification compliance documented by acceptance test records, and monitor inspection records. Specification noncompliance will require corrective action by the producer, contractor, or by the contractor's designated producer, and review of events and results associated with noncompliance by the Project Engineer.

CERTIFICATION LEVELS

CERTIFICATION LEVEL	TITLE	PRE-REQUISITES
Level I Aggregate	AGGREGATE	
Level II Aggregate	Certified Sampling Technician	None
	Certified Aggregate Technician	Level I Aggregate
	PORTLAND CEMENT CONCRETE	

UNSATISFACTORY PERFORMANCE NOTICE

Issued To: \qquad Date: \qquad
\qquad
\qquad

This notice is to inform you that your performance as a Certified Inspector/Technician was unsatisfactory for the reason(s) listed below.

This notice will be placed in your permanent file with the District Materials Office in which you reside. It will also be placed on the statewide computer file.

The goal of the Technical Training and Certification Program (TTCP) is to work with contractors, producers, cities, and counties to continually improve the quality of lowa's construction projects. We hope you will work with us to achieve this goal.

Unsatisfactory Performance:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

District Materials Engineer
cc: Program Director -Construction and Materials Engineer, Ames
TTCP Coordinator
Resident Construction Engineer

CERTIFIED TECHNICIANS QUALIFICATIONS

Tests and Procedures the Certified Technician is qualified to perform for each level of certification.

LEVEL I AGGREGATE

- IM 204 - Inspection of Construction Project Sampling \& Testing (when material is incorporated)
- IM 209, App. C - Aggregate Specification Limits \& Sampling \& Testing Guide (when material is produced)
- IM 301-Aggregate Sampling Methods
- IM 336 - Methods of Reducing Aggregate Field Samples to Test Samples

LEVEL II AGGREGATE

- IM 210 - Production of Certified Aggregate From Reclaimed Roadways
- IM 216 - Guidelines for Verifying Certified Testing Results
- IM 302 - Sieve Analysis of Aggregates
- IM 306 - Determining the Amount of Material Finer Than \#200 (75 \quad m) Sieve in Aggregate
- IM 307 - Determining Specific Gravity of Aggregate
- IM 308 - Determining Free Moisture \& Absorption of Aggregate
- IM 336 - Methods of Reducing Aggregate Field Samples to Test Samples
- IM 344 - Determining the Amount of Shale in Fine Aggregate
- IM 345 - Determining the Amount of Shale in Coarse Aggregate
- IM 368 - Determining the Amount of Clay Lumps \& Friable Particles in Coarse Aggregate
- IM 409 - Source Approvals for Aggregate

LEVEL I PCC

- IM 204 - Inspection of Construction Project Sampling \& Testing
- IM 208 - Materials Laboratory Qualification Program
- IM 216 - Guidelines for Verifying Certified Testing Results
- IM 315 - Method of Protecting, Curing, Making \& Testing Concrete Cylinders
- IM 316 - Flexural Strength of Concrete
- IM 317 - Slump of Hydraulic Cement Concrete
- IM 318 - Air Content of Freshly-Mixed Concrete by Pressure
- IM 327 - Sampling Freshly-Mixed Concrete
- IM 328 - Making, Protecting, and Curing Concrete Flexural Specimens
- IM 340 - Weight Per Cubic Foot, Yield, \& Air Content (Gravimetric) of Concrete
- IM 383 - Testing the Strength of PCC Using the Maturity Method
- IM 385-Temperature of Freshly-Mixed Concrete
- IM 525 - Designing Flowable Mortar
- Iowa 410-B - Method of Test for Flow of Grout Mixtures
- AASHTO T97 - Third Point Loading

LEVEL II PCC

- IM 527 - Paving Plant Inspection
- IM 528-Structural Concrete Plant Inspection
- IM 529 - PC Concrete Proportions

LEVEL III PCC

- IM 530- Quality Management \& Acceptance of PC Concrete Pavement
- IM 531 - Test Method for Combining Aggregate Gradations
- IM 532 - Aggregate Proportioning Guide for Portland Cement Concrete Pavement

HMA SAMPLER

- IM 320 - Method of Sampling Compacted Asphalt Mixtures
- IM 321 - Method of Test for Compacted Density of Hot Mix Asphalt (HMA) (Displacement Method)
- IM 322 - Method of Sampling Uncompacted Hot Mix Asphalt
- IM 323 - Method of Sampling Asphaltic Materials

LEVEL I HMA

- IM 204 - Inspection of Construction Project Sampling \& Testing
- IM 208 - Materials Laboratory Qualification Program
- IM 216 - Guidelines for Verifying Certified Testing Results
- IM 320 - Method of Sampling Compacted Asphalt Mixtures
- IM 321 - Method of Test for Compacted Density of Hot Mix Asphalt (HMA) (Displacement)
- IM 322 - Method of Sampling Uncompacted Hot Mix Asphalt
- IM 323 - Method of Sampling Asphaltic Materials
- IM 325G - Method of Test for Determining the Density of Hot Mix Asphalt (HMA) Using the Superpave Gyratory Compactor (SGC)
- IM 337 - Determining Thickness of Completed Courses of Base, Subbase, \& Hot Mix Asphalt
- IM 350 - Maximum Specific Gravity of Hot Mix Asphalt (HMA) Mixtures
- IM 357 - Preparation of Hot Mix Asphalt (HMA) Mix Samples for Test Specimens
- IM 501 - Asphaltic Terminology, Equations \& Example Calculations
- IM 508 - Hot Mix Asphalt (HMA) Plant Inspection
- IM 509 - Tank Measurement \& Asphalt Cement Content Determination
- IM 511-Control of Hot Mix Asphalt (HMA) Mixtures

LEVEL II HMA

- IM 380-Vacuum-Saturated Specific Gravity \& Absorption of Combined or Individual Aggregate Sources
- IM 510 - Method of Design of Hot Mix Asphalt (HMA) Mixes
- AASHTO T176 - Plastic Fines in Graded Aggregate \& Soils by use of Sand Equivalent Test
- AASHTO T304 - Uncompacted Void Content of Fine Aggregate
- ASTM D 4791 - Flat Particles, Elongated Particles, or Flat \& Elongated Particles in Coarse Aggregate
- AASHTO T283 Resistance of Compacted Hot Mix Asphalt (HMA) to Moisture-Induced Damage

PROFILOGRAPH

- IM 341 - Determining Pavement \& Bridge Ride Quality

PRESTRESS

- IM 570-Precast \& Prestressed Concrete Bridge Units

SOILS

- IM 309 - Determining Standard Proctor Moisture Density Relationship of Soils
- IM 312 - Sampling of Soils for Construction Project
- IM 335 - Determining Moisture Content of Soils
- ASTM D-2937 - Field density by drive-cylinder method

AGGREGATE TECHNICIAN DUTIES

Duties of the Aggregate Technician are detailed in IM 209 and the IM 300 Series and consist of, but are not limited to the following:
A. Sampling

1. Obtain representative samples by approved method(s).
2. Sample at required frequencies.
3. Identify samples with pertinent information such as:
a. Type of material
b. Intended use
c. Production beds working depth
d. Sampling method
4. Reduce samples by approved method(s).
B. Gradation Testing
5. Follow appropriate gradation testing methods.
6. Maintain current applicable specifications.
7. Post test results within 24 hours of sampling.
C. Other Testing as Required (specific gravity, moisture, deleterious material, etc.)
8. Follow appropriate testing methods.
9. Maintain current applicable specifications.
10. Complete required reports.
D. Sampling \& Testing Equipment
11. Clean and check testing sieves for defects.
12. Assure scale accuracy.
13. Maintain sampling and testing equipment.
E. Communication
14. Notify the District Materials office for production start-up or changes.
15. Relay test results to appropriate production or supervisory personnel.
16. Report failing test results immediately to appropriate personnel (including District Materials office) and assure remedial actions are taken.
F. General
17. Monitor stockpiling procedures to avoid contamination and excess segregation.
18. Assure proper identification of stockpiles.
19. Assure specification requirements for intended use are met before shipment.
20. Assure sampling locations are safe.
21. Assure proper bedding planes or production depths are maintained.
G. Documentation
22. Report all production test results of certified aggregates on Form \#821278 and distribute as required.
23. Assure "plant production log" is maintained.

PORTLAND CEMENT CONCRETE (PCC) TECHNICIAN DUTIES PAVING \& STRUCTURAL CONCRETE

The Quality Control Technician shall have no other duties while performing certified inspection duties. Refer to IM 528 for exceptions. The District Materials Engineer may approve all quality control activities be performed by a single certified technician for low production situations.

Many of the duties of the PCC Level II Technician are detailed in IM 527 (Paving) and IM 528 (Structural) and consist of, but are not limited to the following:
A. Stockpiles

1. Assure proper stockpiling procedures.
2. Prevent intermingling of aggregates.
3. Prevent contamination.
4. Prevent segregation.
B. Plant Facilities
5. Assure safe sampling locations.
6. Check for equipment compliance.
7. Assure proper laboratory location and facilities.
C. Calibration
8. Be present during calibration (paving).
9. Check plant calibration (structural).
10. Assure proper batch weights.
D. Cement (Fly Ash) \& Aggregate Delivery
11. Check for proper sources and certification.
12. Document quantities delivered.
13. Monitor condition of shipments.
E. Plant Sampling
14. Check aggregate gradations by obtaining, splitting, and testing samples.
15. Check aggregate moistures and specific gravity.
F. Proportion Control
16. Check scale weights and operation.
17. Check admixture dispensers.
18. Check mixing time and revolutions.
19. Check cement yield. (Paving plant only, unless over 10,000 cu. yds.)
G. Concrete Tests
20. Cure flexural test specimens.
21. Test flexural specimens (Contract agency will perform test in structural plant).
22. Conduct maturity testing.
H. Test Equipment
23. Clean and maintain scales, screens, pycnometers and beam molds, and laboratory facility.
I. Documentation
24. Prepare daily plant reports (paving), weekly plant reports (structures).
25. Document all checks and test results in the field book.
26. Maintain daily diary of work activity.

HOT MIX ASPHALT (HMA) TECHNICIAN INSPECTION DUTIES

The following is a list of the duties that must be performed by the Certified Level I HMA Technicians doing quality control work for the Contractor on all projects where the Quality Management-Asphalt (QM-A) specification applies. The Quality Control Technician shall have no other duties while performing certified inspection duties.

These duties consist of, but are not limited to, the following:
A. Aggregate Stockpiles.

1. Assure proper stockpiling of aggregate deliveries. (stockpile build \& additions) (daily check list, IM 508)
a. Prevent intermingling of aggregates.
b. Check for and prevent contamination.
c. Prevent segregation.
d. Check for oversize material.
2. Document certified aggregate deliveries. (each delivery) (plant book, IM 508)
a. Obtain truck tickets.
b. Check for proper certification.
c. Check for proper approved source.
d. Enter deliveries in Plant Book Program, Aggregate Certification page.
3. Observe loader operation. (daily) (daily check list, IM 508)
a. Check for proper stockpile to bin match-up.
b. Check that loader does not get stockpile base material in load.
c. Check that loader does not intermingle aggr. by overloading bins.
B. Asphalt Binder Delivery. (each delivery) (plant report \& plant book, IM 508 \& 509)
4. Check that material is pumped into correct tank.
5. Document Deliveries.
a. Obtain truck tickets.
b. Check for proper approved source.
c. Check for proper certification.
d. Check for proper grade.
e. Check for addition of liquid anti-strip if required.
f. Check if weight per gallon or specific gravity has changed.
g. Enter deliveries into Plant Book Program, Asphalt Binder Shipment Log page.
C. Plant Operations. (daily)
6. Prepare Plant Report Program for daily entries. (plant report, IM 511)
a. Enter Date.
b. Enter Report Number.
c. Enter expected tonnage for the day.
d. Enter any proportion or target changes that apply.
7. Aggregate Delivery System. (daily check list, IM 508)
a. Check for proper cold feed gate settings.
b. Check for proper cold feed belt speed settings.
c. Check for proper moisture setting (drum plants).
d. Monitor RAP proportions
8. Mixing System. (daily check list, spec 2303.03, IM 508)
a. Check for proper asphalt binder delivery setting.
b. Check for proper interlock operation.
c. Monitor coating of aggregates.
d. Monitor mixing time (batch plants).
9. Loading System. (daily check list, spec 2303.03 \& 2001.01, IM 508)
a. Check hopper/silo gates for proper open/close
b. Check trucks for proper loading and possible segregation.
c. Check trucks for diesel fuel contamination in box and remove contaminated trucks from service (5 hrs with box raised).
10. Asphalt Binder Quantity Determination. (plant report, IM 508 \& 509)
a. Perform start-up tank stick measurement before mix production begins (if applicable).
b. Perform final tank stick measurement after mix production is done (if applicable).
c. Perform intermediate tank stick measurements as needed.
d. If using meter for quantity, obtain totalizer printout readings and periodically check against tank stick readings.
e. If using batch count for quantity, obtain printouts of each batch and add up the asphalt binder used for total quantity.
D. Plant Operations. (2 hour intervals) (plant report, IM 508)
11. Temperatures.
a. Monitor and record mix temperature at discharge into truck box.
b. Monitor and record asphalt binder temperature.
c. Monitor and record air temperature.
12. Observe plant operation for any irregularities.

E. Weighing Equipment.

1. Proportioning scales (batch plants). (min. 1/day) (spec 2001.07 \& 2001.20)
(daily check list, IM 508)
a. Perform sensitivity checks of scales.
b. Check for interference at scale pivot points.
2. Pay Quantity Scales. (min. 1/day) (spec 2001.07 \& 2001.20, IM 508)
(daily check list, plant book)
a. Regularly perform check weighing comparisons with a certified scale as necessary. (min. $1^{\text {st }}$ day and one additional if >5000 tons, and as
b. Perform sensitivity checks of scales. directed by Engineer)
c. Check for interference at scale pivot points.
d. Perform verification weighing (truck platform scales).
3. Weigh Belts. (daily) (daily check list)
a. Check weigh belt for excess clinging fines that effects speed reading.
b. Check weigh belt for interference at bridge pivot points.
c. Check for proper span setting.
4. Enter scale checks in Plant Book Program, Daily Check List or Plant Scale Checks page. (daily) (plant book)
F. Plant Sampling. (daily) (spec 2303.04, IM 204 \& 511)
5. Obtain cold-feed gradation samples as directed by Contracting Authority personnel per IM 301and IM 204.
6. Obtain asphalt binder samples as directed by Contracting Authority personnel per IM 323 and IM 204.
7. Enter sample data into Plant Book Program, Sample Log page.
8. Obtain cold-feed moisture samples at a minimum of every $1 / 2$ day (drum mix plants).
G. Field Sampling (if not performed by others). (daily) (spec 2303.04, IM 204 \& 511)
9. Obtain uncompacted mix random samples as directed by Contracting Authority personnel, and identify time, station, lift and side.
10. Obtain compacted mix core random samples as directed by Contracting Authority personnel.
H. Testing. (daily) (spec 2303.04, IM 204 \& 511)
11. Field cores.
a. Provide properly calibrated equipment for Contracting Authority technician's use.
b. Obtain and record core location station and offset information.
c. Obtain copy of core thickness measurements from Contracting Authority Technician.
d. Obtain copy of core weights from Contracting Authority technician.
e. Record weights and thickness in Plant Report Program.
f. Enter sample data into Plant Book Program Sample Log page.
12. Uncompacted mix.
a. Properly store Contracting Authority secured portion of paired sample.
b. Split Contractor half of paired sample into test portions as per IM 357.
c. Perform gyratory compaction as per IM 325G.
d. Perform bulk specific gravity test of laboratory-compacted specimen as per IM 321.
e. Perform maximum specific gravity test as per IM 350 .
f. Enter test data into Plant Report Program.
g. Submit secured samples to DOT District Lab.
h. Enter sample data into Plant Book Program, Sample Log page.
13. Aggregate.
a. Split one sample each day as directed by Contracting Authority personnel and provide half for testing by Contracting Authority.
b. Perform gradation analysis as per IM 302 and enter weights into Plant Report Program.
c. Perform moisture tests and enter weights into Plant Book Program, Plant Moistures page (drum mix plants).
14. Testing Lab Qualification. (as needed) (IM 208 \& 511)
a. Record all HMA sample validations with DOT on form 235.
b. Document corrective actions taken when not correlating.
c. Document all test equipment calibrations.
d. Update IM's, test procedures and specs as required.
I. Documentation. (daily) (spec 2303.04, plant report, plant book, IM 204, 511 \& 508)
15. Prepare computerized Daily Plant Report (form 241).
a. Check that all data is correct.
b. Check that all data is complete.
c. Compute moving averages for gradation and lab voids.
d. Compute tons of mix used to date.
e. Enter mix adjustment data on report.
f. Check for spec compliance.
g. Immediately report non-complying results.
h. Obtain and record mat temperatures and stationing.
i. Provide daily Plant Report printout to DME.
16. Maintain a daily diary of work activity in Plant Report Program.
a. Record weather conditions.
b. Record daily high and low temperatures.
c. Record sunrise and sunset times.
d. Record any interruptions to plant production.
e. Record any other significant events.
17. Copy and export daily data and paste into control charts program.
18. Enter all asphalt binder or aggregate proportion changes in Plant Book Program, Mix Adjustments page.
19. Enter tack shipment quantities in Plant Book Program, Tack Shipment Log page.
20. Total all truck tickets delivered to project and deduct any waste to determine HMA pay quantity.
J. Miscellaneous. (daily) (daily check list, IM 208 \& 511)
21. Fill out Plant Book Program, Daily Check List page.
22. Clean lab.
23. Back-up computer files.
24. Dispose of samples as directed by District Lab.
25. Clean and maintain lab equipment.
K. Independent Assurance Duties. (Every 3 months) (IM 205 \& 216)
26. Pick up HMA and aggregate proficiency sample from District Lab.
27. Test aggregate proficiency sample for gradation per IM 302.
28. Test HMA proficiency sample per IM 357, 325G, 321 \& 350.
29. Report test results on proficiency samples to Central Materials Office per IM 205.
L. Project Duties. (1/project) (IM 508 \& 511)
30. Be in possession of appropriate mix design.
31. Be present during plant calibration.
32. Observe scale calibrations.
33. Perform plant site and set-up inspection and fill out Plant Site Inspection List.
34. Set up Plant Report and Plant Book Programs and enter all project information to create Project Master files at beginning of project.
35. Check that release agents used in truck boxes are on the approved list in IM 491.15
36. Copy all computer files and provide to the Contracting Authority at completion of project.
37. Copy all paperwork and control charts and provide to the Contracting Authority at completion of project.

PRESTRESS TECHNICIAN DUTIES

Duties of the Prestress Technician are detailed in IM 570 and consist of, but are not limited to the following:
A. Pre-pour

1. Identify and document materials requiring outside fabrication inspection.
2. Identify potential fabrication or production problems and notify lowa DOT inspectors.
3. Verify that all materials incorporated meet the requirements of the contract documents.
4. Review concrete placement documents for strand locations.
5. Check tension calculations.
6. Measure elongation and gauge pressure during tensioning.
7. Check hold down and insert locations.
8. Check stress distributions.
9. Check steel reinforcement and placement.
10. Check strand position.
11. Check condition of pallet.
a. Level
b. Holes
c. Gaps
d. Other deformities
12. Determine moisture of aggregates.
13. Check form condition and placement.
a. Oil
b. Line alignment level
c. Tightness
B. Concrete Placement
14. Check on use of an approved mix design and batching operations (sequence).
15. Assure appropriate placement and proper vibration techniques.
16. Measure and record concrete temperature.
17. Assure test cylinders are properly made.
18. Assure appropriate finish.
19. Assure appropriate curing operations.
C. Post-pour
20. Check temperature and record during curing process.
21. Assure concrete strength has been met prior to releasing the line.
22. Assure proper detensioning procedure.
23. Check unit for defects and obtain approval for repairs.
24. Identify and store cylinders with the respective units.
25. Check beam ends for fabrication in accordance with the plans.
26. Assure exterior sides of facia beams are grouted.
27. Inspect after patching and desired surfacing.
28. Measure and record overall dimensions of beam.
29. Measure and record camber at release and compare to design camber.
30. Check and/or measure and record lateral sweep before shipping.
31. Assure proper cylinder cure.

PROFILOGRAPH TECHNICIAN DUTIES

Duties of the Profilograph Technician are detailed in IM 341 and consist of, but are not limited to the following:
A. Test pavement and bridge surfaces for ride quality.
B. Evaluate the test data.

1. Indentify bumps and dips.
2. Summarize the roughness into segments and sections.
3. Identify the segments for incentive, disincentive, or grind.
4. Retest and evaluated bumps, dips, and must grid segments for specification compliance.
C. Documentation
5. Document the evaluation on a test report. A copy is sent to the Project Engineer, District Materials Engineer, and Central Materials.
6. Notify the Project Engineer if the daily average profile index exceeds the specification tolerance.
7. Submit the profilograms to the Project Engineer for all areas tested.

SOILS TECHNICIAN DUTIES

A certified Soils Technician is required for all projects with Compaction with Moisture Control, Compaction with Moisture and Density Control, or Special Compaction of Subgrade (including for Recreation Trails). Refer to contract documents for Contractor QC testing requirements. Duties of the Soils Technician consist of, but are not limited to the following:
A. Sampling: Obtain samples at required frequencies per IM 204.
B. Proctor Testing
C. Other Testing as Required

1. For projects with Compaction with Moisture Control: Determine moisture content per frequencies in IM 204.
2. For projects with Compaction with Moisture and Density Control or Special Compaction of Subgrade: Determine moisture content and in-place density per frequencies in IM 204.
D. Sampling \& Testing Equipment
3. Clean and check testing sieves for defects.
4. Assure scale accuracy.
5. Check and maintain other testing equipment.
E. Evaluate the test data.
6. For projects with Compaction with Moisture Control: Confirm soils are being placed within required moisture content range.
7. For projects with Compaction with Moisture and Density Control or Special Compaction of Subgrade: Confirm soils are being placed within required moisture content range and soil is compacted to density equal to or greater than density requirement.
F. Documentation and Communication
8. Document test data. A copy is sent to the Project Engineer.
9. Relay test results to appropriate supervisory personnel.
10. Notify the Project Engineer if any test results do not meet contract requirements and assure corrective actions are taken.

EROSION CONTROL TECHNICIAN DUTIES

Duties of the Erosion Control Technician consist of, but are not limited to the following:
A. Carefully review and be familiar with the details in the contract documents.
B. Assign erosion and sediment control monitoring responsibilities to Erosion \& Sediment Control (ESC) Basics trained field staff.
C. Review copies of storm water inspection reports.
D. Provide input on initial Erosion Control Implementation Plan (ECIP) submittal and ECIP updates.
E. Provide onsite reviews when requested by Contracting Authority or Contractor field staff.

MATERIAL ACCEPTANCE REPORT

Material Acceptance Report

 January 26, 2010

Material Acceptance Report

 January 26, 2010

SOURCE OF
 MATERIALS LIST

Source of Materials List

	+

Prolect No ESFM - CO31 (61) --5S-3
Proportioned (PCC and HMA)
Course and fine aggregates
Non-proportloned
Aggregates

HMA Source
Anti-stripping Agent (hydrated lime or other
additives)
Ready Mix Source
PCC Paving \& Patch

$$
\begin{aligned}
& \text { Cement } \\
& \text { GGBFS } \\
& \text { Fly Ash } \\
& \text { Admixture-Air Entraining } \\
& \text { Admixture-Retarder } \\
& \text { Admixture-Water Reducer } \\
& \text { Curing Compound, White } \\
& \text { Curing Compound, Clear } \\
& \text { Concrete Sealer } \\
& \text { Engineering Fabric } \\
& \text { Grout, Polymer } \\
& \text { Joint Filler } \\
& \text { Reinforcing steel (dowels) } \\
& \text { Reinforcing steel (Tie bars) } \\
& \text { Dowel Basket assemblies } \\
& \text { Water }
\end{aligned}
$$

Cement
GGBFS
Fly Ash
Admixture-Air Entraining
Admixture-Retarder
Admixture-Water Reducer
Admixture-Retarder
Curing Compound, White
Curing Compound, Clear
Concrete Sealer
Paint Bridge
Beams, Prestressed
Structural steel
Piling wood
Piling Steel
Piling, concrete
Pile Points
Reinforcing steel, uncoated
Epoxy coated steel
Bronze bearing plates
Elastomeric Bridge Bearing Pads.
Steel diaphragms
Floor drains
Steel Masonry Plates
Wood treated timber and lumber
C
C
Structures
Bridge
Culvert
Deck Overlay

Guardrail \& Safety Enhancement
Guardrail, wood post
guardrail Cable
Steel posts
Guardrail, formed steel beam
Guardrail, End Anchorages
Guardrail Bridge Connections
Guardrail, End Anchorages, cable
Guardrail, End Anchorages, cable
Guardrail, High Tension
Guardrail, High Tension
Removable Marking Tape
Traffic Paint
Beads for Traffic Paint
Delineator Posts
Delineators, Amber
Delineators, White
Object Markers, Type 3

[^3] Channeling Devices (Barricades \& cones)
TBR
Signs
Posts
Overhead Sign Assemblies and Supports
Anchor bolts, nuts and washers
Conduit
Control Cabinet
Circuit Breakers
Ground Rods
Luminaries
Poles and Mast Arms
Transformer Base
Tower Light Poles
Traffic Signals
Temporary Traffic Signals
Lighting \& Signing
Miscellaneous
I.M. 204

Inspection of Construction Project Sampling \& Testing

INSPECTION OF CONSTRUCTION PROJECT SAMPLING \& TESTING

INTRODUCTION

The lowa Department of Transportation (DOT) has established a Quality Assurance Program (IM 205) to assure that the quality of materials and construction workmanship incorporated into all highway construction projects is in reasonable conformity with the requirements of the approved plans and Specifications, including approved changes. It consists of an Acceptance Program and an Independent Assurance Program (IAP), both of which are based on test results obtained by qualified persons and equipment.

The acceptance portion of the program covers quality control (QC) sampling and testing and verification sampling and testing. The IAP portion of the program covers the evaluation of all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (includes Contractor, Contracting Agency, and consultant).

ACCEPTANCE PROGRAM FOR MATERIALS

To fulfill the materials acceptance requirements, several methods are used by the DOT.
Sampling \& Testing (Test Report)
Certification
Approved Sources
Approved Shop Drawings
Approved Catalog Cut
Fabrication Report
Visual Approval by the Engineer
In many cases more than one method may be required for acceptance in the 204 Appendices and tables in the back of this guide. For some new or special materials, the Materials Engineer may need to determine the most appropriate acceptance requirements.
In order to provide the Contractor the opportunity to construct a project with minimal sampling and testing delays, inspection is performed at the source for many materials. Source inspection may consist of inspecting process control, sampling for laboratory testing or a combination of these procedures. All source-inspected or certified materials are subject to inspection at the project site prior to being incorporated into the work. Project site inspections are for identification of materials with test reports and for any unusual alterations of the characteristics of the material due to handling or other causes. Verification samples secured by project Agency personnel of source-inspected, certified, or project processed materials are also required for some materials in order to secure satisfactory validation for acceptance.

When certification procedures are required, the Contractor may, on the Contractor's own responsibility and at the Contractor's risk, incorporate these materials into the work. Acceptance will be based on satisfactory certification and compliance of the test results of any verification samples. When verification samples are not required, acceptance will be based on satisfactory certification.
A. SAMPLING \& TESTING (TEST REPORT)

When a material is sampled and tested, the results will be documented on a construction form or a test report. There is quality control sampling and testing done by the Contractor or producer and verification sampling testing done by the Project Engineer, the District Materials Engineer, the Central Materials Laboratory, or an independent laboratory.

In many cases, in addition to sampling and testing, some other type of acceptance method will also be required. Sampling and testing may be done at the project, supplier, or source depending on which is the most appropriate.

B. CERTIFICATION OF COMPLIANCE

For many materials a fabricator, manufacturer, or supplier is required to provide the Project Engineer with a certification document stating that the material meets the requirements of the plans and specifications. In most cases, the fabricator, manufacturer, or supplier must also be on an approved list in the IM . For some of these materials, sampling and testing is also required before final acceptance. The certification comes in a variety of forms:

- Stamped or preprinted on truck tickets as with aggregates,
- Stamped or preprinted on invoices as with Portland Cement and asphalt binder,
- Stamped or printed on the Mill Analysis as with reinforcing steel, structural steel, and other metals,
- Furnished as a separate document with each shipment as with zinc-silicate paint, engineering fabrics, epoxy coatings, and dowel baskets,
- Stamped or printed on a list of materials for each shipment as with CMP, concrete pipe, clay tile, and corrugated plastic subdrain,

The inspector will verify that the certification has been received by documenting it in the project materials book.

C. APPROVED SOURCE

(May also be referred to as "Approved Producer, Approved Supplier, Approved Fabricator, or Approved Brand") The source, producer, and the material must be evaluated and approved by the Office of Construction and Materials according to the appropriate Materials IM in order to be used on a project. Once a letter of approval is issued, the source or producer is approved for use on projects (with the exception of steel fabricators). Approved lists are issued biannually for general information only. Approval for a source or producer may be rescinded at any time if it no longer meets the requirements of the IM.

The project inspector will document information about this material such as product name, source, date, producer, and lot number in the project materials book.

Most approved sources also require a certification.

D. APPROVED WAREHOUSE STOCK

For some items made up of miscellaneous materials, inspection and approval will be done by the District Materials Engineer at the supplier's warehouse.

E. APPROVED SHOP DRAWING \& APPROVED CATALOG CUT

This information must be submitted to, and reviewed by the lowa DOT Central Design Office, before the material can be incorporated in the project.

F. FABRICATION REPORT

The project inspector must have a copy of the final fabrication report prior to incorporating the item into the project. The report will vary depending on the Materials IM requirements for the item fabricated. Final acceptance is by construction personnel at the project site, and is based on the proper documentation and the condition of the component.
G. VISUAL APPROVAL BY PROJECT ENGINEER
(May also be referred to as "As Per Plan, Approved By RCE, or Manufacturer Recommendations") The project inspector must document information about this material such as product name, source, producer, lot number and date produced in the project materials book. The inspector will make sure the material meets the requirements of the plans, the Engineer, or the manufacturer before the material is used. Visual approval requires construction personnel to visually inspect the material to determine if it complies with the specifications. Visual approval is appropriate for non-critical items such as mulch or sod stakes, where compliance can be readily determined by visual means. If there are questions on specification compliance, samples will be taken for testing.

INDEPENDENT ASSURANCE PROGRAM

The IAP evaluates all sampling and testing procedures, personnel, and equipment used as part of an acceptance decision (Includes Contractor, Contracting Agency, and consultant). Independent assurance includes evaluation based on:

Calibration checks
Split samples
Proficiency samples
Observation of sampling and testing performance
The test method and the frequency of test are in the Appendices. Calibration checks and proficiency samples testing is covered in IM 208.

SMALL QUANTITIES

The FHWA allows and encourages alternative acceptance methods for small quantities of noncritical materials. Appendix X contains a list of those materials and maximum quantities for which alternative acceptance methods may be appropriate. The Project Engineer or District Materials Engineer may still require the normal acceptance method for a material when it is considered critical in the intended application.

IM 204 Appendixes

Appendix A Roadway \& Borrow Excavation \& Embankments
Appendix B Soil Aggregate Subbase
Appendix C Modified Subbase
Appendix D Granular Subbase
Appendix E Portland Cement Concrete Pavement, Pavement Widening, Base Widening, Curb \& Gutter \& Paved Shoulders
Appendix F Hot Mix Asphalt (QMA)

Appendix H Structural Concrete, Reinforcement, Foundations \& Substructures, Concrete Structures, Concrete Floors, \& Concrete Box, Arch \& Circular Culverts
Appendix I Concrete Drilled Shaft Foundations
Appendix K Cold-In-Place Recycled Asphalt Pavement
Appendix L Granular Surfacing/Driveway Surfacing
Appendix M Concrete Bridge Floor Repair \& Overlay \& Surfacing
Appendix P Surface Treatment (Seal Coat, Slurry, Joint Repair, Crack Filling \& Fog Seal)
Appendix T Base Repair, Pavement Repair
Appendix U Granular Shoulders
Appendix V Subdrains
Appendix W Water Pollution Control, Erosion Control
Appendix X Acceptance of Small Quantities of Materials
Appendix Z Supplemental Guide, Basis of Acceptance

Sampling \& Testing Guide-Minimum Frequency

April 15, 20 Supersedes	ctober 1	2007			OIL A	GRE Sec	ATE S $\text { n } 2110$	BBA!						atls. IM 204 Appendix B
MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE			ITY CONT					$\begin{aligned} & \text { VDEPEND } \\ & \text { \& VERI } \end{aligned}$	NT ASSURAN CATION S\&T			REMARKS
		RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{gathered} \text { S\&T } \\ \text { TYPF } \end{gathered}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPEC														
Granular Surfacing Material (4120)		AS 209												
GRADE INSPECT														
Mixed Materials (2110)	Density (Proctor)	309						V	RCE	2/mile (min. 2/proj.)	5000 gm	RCE	Field Book	Change of Soil type requires additional Proctors
Uncompacted Mixture	Pulverization Moisture	$\begin{aligned} & \hline 2^{\prime \prime} \text { Sieve } \\ & \text { Visual } \end{aligned}$						V	RCE	2/mile		RCE	Field Book	
Compacted Mixture (2110)	Density Thickness Width	$\begin{array}{r} \hline 311,312,334 \\ 337 \end{array}$						V	RCE	2/mile		RCE	Field Book	
Finished Subbase	Cross Section	Stringline						V	RCE	10/mile		RCE	Field Book	Template for secondary park \& institutional roads
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing			Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer IA-Independent Assuran DME-District Materials Engineer V-Verification CTRL-Central Materials Office CONTR-Contractor							

Matls. IM 204
Appendix C (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{aligned} & \text { S\&T } \\ & \text { TYPE } \end{aligned}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	
SOURCE INSPECTION														
Natural Aggregate	Quality Gradation	AS 209												
Recycled Products														
Composite	Gradation	*As Per Spec.												
	Gradation	*As Per Spec.												
Rap		*As Per Spec.												
GRADE INSPECTION														
Compacted Subbase	Density	*As Per Spec.						V	RCE			RCE	Field Book	
Dimensions	Thickness Width	337						V	RCE	3/2 lane mi.		RCE	Field Book	
	Cross Section (Primary)	Stringline						V	RCE	10/mi.		RCE	Field Book	
	Cross Section (Other)	Template						V	RCE	3/mi.		RCE	Field Book	
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing		Cert- Certification Statement					RCE-Resident Construction Engineer/Project Engineer IA-Independent Assurance DME-District Materials Engineer V-Verification CTRL-Central Materials Office CONTR-Contractor							

* Use Current Specification for Modified Subbase
Sampling \& Testing Guide-Minimum Frequency

MODIFIED SUBBASE

Section 2115
Supersedes October 17, 2006
Sampling \& Testing Guide-Minimum Frequency

Sampling \& Testing Guide-Minimum Frequency
PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.
Sampling \& Testing Guide-Minimum Frequency
PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	$\begin{aligned} & \text { S\&T } \\ & \text { TYPE } \end{aligned}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPECTION														
Steel Reinforcement (4151) 														
Dowels Tie Bars General Use	Quality	AS 451												
	Quality	AS 451												
	Quality	AS 451												
PLANT INSPECTION														
Aggregates-Fine$(4110 / 4111)$	Grad QMC	$\begin{aligned} & 302 \\ & 306 \\ & 336 \end{aligned}$	CONTR	1/1500cy	IM 301	CONTR	800240	V IA	RCE/ CONTR	Sample 1/day, test $1^{\text {st }}$ day + 2/week	IM 301	RCE DME		IM 530 for intermittent production
	Grad Non-QMC	$\begin{aligned} & 302 \\ & 306 \\ & 336 \end{aligned}$	CONTR	1/day	IM 301	CONTR		V IA	RCE/ CONTR	Sample 1/day, test $1^{\text {st }}$ day + 1/-week	IM 301	RCE DME		IM 527 for intermittent production
	Moist	308, 527	CONTR	1/half day	1000 gm	CONTR								Not applicable with probe
	Sp. Gr.	307	CONTR	IM 527	1000 gm	CONTR								
	Quality	AS 209												
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing		Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						Indepe Verifica MC-Qu	ent Assu Manage	ce ent Concrete

NOTE: IA may be accomplished by system approach or on a per project basis (IA at 1 per 100,000 sy of concrete) at the discretion of the DME.
NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing.
Sampling \& Testing Guide-Minimum Frequency
PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs		QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
				$\begin{gathered} \text { SAMPLE } \\ \text { BY } \end{gathered}$	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{gathered} \text { S\&T } \\ \text { TYPE } \end{gathered}$	$\begin{gathered} \text { SAMPLE } \\ \text { BY } \end{gathered}$	FREQ.	SAMP. SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	
PLANT INSPECTION															
AggregatesCoarse (4115), Intermediate	Grad QMC	$\begin{aligned} & 302 \\ & 306 \\ & 336 \end{aligned}$		CONTR	$\begin{aligned} & \hline \text { QMC } \\ & 1 / 1500 \mathrm{cy} \end{aligned}$	IM 301	CONTR	800240	V IA	RCE/ CONTR	$\begin{aligned} & \hline \text { Sample } \\ & 1 / \text { day,test } 1^{\text {st }} \\ & \text { day+2/-week } \end{aligned}$	IM 301	RCE DME		IM 530 for intermittent production
	Grad NonQMC	$\begin{aligned} & 302 \\ & 306 \\ & 336 \end{aligned}$		CONTR	1/day	IM 301	CONTR		V IA	RCE/ CONTR	$\begin{aligned} & \text { Sample } \\ & 1 / \text { day, test } 1^{\text {st }} \\ & \text { day }+1 / \text { week } \end{aligned}$	IM 301	RCE DME		IM 527 for intermittent production
	Moist	308		CONTR	1/half day	IM 301	CONTR								
	Sp. Gr.	307		CONTR	IM 527	IM 301	CONTR								
	Quality	AS	209						V	DME	1/100,000 sy	50 lb	CTRL		
Portland Cement (4101)	Quality	AS	Cert		Each Load				V	DME	1/100,000 sy	15 lb	CTRL		
	Cement Yield			CONTR	$\begin{aligned} & 1 / 10,000 \\ & \text { cy } \end{aligned}$		CONTR	820912							
Fly Ash	Quality	AS	Cert		Each Load			800240	V	DME	1/100,000 sy	15 lb	CTRL		
GGBFS(Ground Granulated Blast Furnace Slag)	Quality	AS	Cert		Each Load				V	DME	1/100,000 sy	15 lb	CTRL		
Air Admixture	Quality	AS	403						V	DME	1/batch	1 pint	CTRL		Sample batches not previously reported or as required by DME
Water Reducer	Quality	AS	403						V	DME	1/batch	1 pint	CTRL		
Retarding Admixture	Quality	AS	403						V	DME	1/batch	1 pint	CTRL		
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing				Cert- Certification Statement			RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						IA-Independent Assurance V-Verification QMC-Quality Management Concrete		

NOTE: IA may be accomplished by system approach or on a per project basis (IA at 1 per 100,000 sy of concrete) at the discretion of the DME.
NOTE: When Certified Plant Inspection is not provided, the engineer is responsible for performing quality control sampling and testing. NOTE: RCE/CONTR indicates that the contractor shall assist in the sampling at the direction of and witnessed by the project engineer.
Sampling \& Testing Guide-Minimum Frequency
PORTLAND CEMENT CONCRETE PAVEMENT, PAVEMENT WIDENING, BASE WIDENING
Matls. IM 204 Appendix E (US) Units

MATERIAL OR CONSTRUCTION	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \mathrm{BY} \end{gathered}$	REPT.	$\begin{gathered} \text { S\&T } \\ \text { TYPE } \end{gathered}$	SAMP. BY	FREQ.	$\begin{gathered} \text { SAMPLE } \\ \text { SIZE } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPT.	
GRADE INSPECTION														
Chloride Solution	Concentration	373	RCE	1/day										
Steel Reinforcement:														
Dowels	Quality	AS 451.03B						V	DME	1/District/Yr	2 ft	CTRL		
Dowel Basket Assembly	Quality	$\begin{array}{ll} \hline \text { AS } & \text { 451 Cert } \\ & 451.03 B \\ \hline \end{array}$												
Tie Bars	Quality	AS 451						V	DME	1/District/Yr	2 ft	CTRL		
General Use	Quality	AS 451						V	DME	1/District/Yr	48 in	CTRL		
Curing Compound (4105)	Quality	Tested 405						V	DME	1/batch	1/qt	CTRL		Sample batches not previously reported or as required by DME
Plastic Concrete	Air QMC	$\begin{aligned} & 318 \\ & 327 \end{aligned}$	CONTR	$\begin{aligned} & 1 / 350 \mathrm{cy}, \\ & 1 / 100 \mathrm{cy} \\ & \text { ready mix } \end{aligned}$		CONTR	E115	$\begin{aligned} & \mathrm{V} \\ & \mathrm{IA} \end{aligned}$	RCE	1/700 cy, 1/350 cy ready mix 1/100,000 sy		$\begin{aligned} & \text { RCE } \\ & \text { DME } \end{aligned}$		Min. 1 test/pour
	Air NonQMC	$\begin{aligned} & \hline 318 \\ & 327 \end{aligned}$					E115	$\begin{aligned} & \mathrm{V} \\ & \mathrm{IA} \end{aligned}$	RCE	1/700 cy, 1/100 cy ready mix 1/100,000 sy		$\begin{aligned} & \hline \text { RCE } \\ & \text { DME } \end{aligned}$		Min. 1 test/pour
	Slump	317						V	RCE	$\begin{aligned} & 1 / 700 \text { cy, } 1 / 100 \\ & \text { cy ready mix } \end{aligned}$		RCE		For hand finish or fixed form only. Min. 1/pour
	Grade Yield		RCE	1/1000 cy		RCE								
	Beams**	316, 327, 328	RCE	2/day		RCE	E115							
Hardened Concrete	Thickness*	346, 347						$\begin{aligned} & \mathrm{V} \\ & \mathrm{IA} \end{aligned}$	$\begin{aligned} & \hline \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	$\begin{aligned} & 1 / 2000 \text { sy } \\ & 10 \% \\ & \hline \end{aligned}$		$\begin{aligned} & \text { RCE } \\ & \text { DME } \\ & \hline \end{aligned}$		
	Smoothness	341	CONTR		100\%	CONTR		V	DME		10\%	DME		
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing		Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						IA-Independent Assurance V-Verification		

*IA thickness cores sent to Central Lab for additional project information testing (Interstate and Primary only.) ** None required when maturity is used.
NOTE: IA may be accomplished by system approach or on a per project basis (IA at 1 per 100,000 sy of concrete or as noted in the table) at the discretion of the DME. NOTE: Quality samples not required when mix quantity is less than 2000 sq. yds., except for curing compound.

Sampling \& Testing Guide-Minimum Frequency
Matls. IM 204
Appendix F (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs		QUALITY CONTROL					INDEPENDENT ASSURANCE, \& VERIFICATION S\&T						REMARKS
				SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{aligned} & \text { S\&T } \\ & \text { TYPE } \end{aligned}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPECTION															
Aggregates-Coarse (4127)		AS	209												
Aggregates-Fine (4127)		AS	209												
Hydrated Lime (4127)		AS	491.04												
Asphalt Binder		AS	437												
Emulsions \& Cutbacks		AS	437												
Release Agent		AS	491.15												
Recycled Asphalt Shingles		AS	506												
PLANT INSPECTION															
Aggregates (2303)	Quality								V	DME	1/20,000 Ton	50 lb .	CTRL		
Combined Aggregate (4127)	Gradation			$\begin{aligned} & \hline \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	1/lot	IM 301	CONTR		V IA	$\begin{aligned} & \hline \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	Sample 1/day, Test 1st day + 20\% Systems Approach*	IM 301	$\begin{aligned} & \hline \text { DME/ } \\ & \text { RCE } \end{aligned}$	IM 216 IM 216	
	Moisture			CONTR	1/half day	1000 gm	CONTR								Dryer Drum Plants Only
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing				Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer IA-Independent Assurance DME-District Materials Engineer V-Verification CTRL-Central Materials Office CONTR-Contractor							

[^4]Sampling \& Testing Guide-Minimum Frequency

> Matls. IM 204 Appendix F (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE, \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	$\begin{aligned} & \text { S\&T } \\ & \text { TYPE } \end{aligned}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	
PLANT INSPECTION														
Mineral Filler								V	DME	1/project	11 lb	DME	821278	
Asphalt Binder	DSR Quality	AS Cert						$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{IA} \end{aligned}$	RCE/ CONTR DME	Sample 1/day Test 1st $1 /$ week 1/20,000 T of Mix Systems Approach	4 oz tin 1 qt	DME CTRL		Log all shipments
Cutback		AS Cert												Log all shipments
Emulsion	Residue	AS 360						V	RCE	1/project	1 qt	DME		Plastic bottle required
GRADE INSPECTION														
Uncompacted Mixture:	Lab Density \& Lab Voids	$\begin{array}{r} 321,350 \\ 325 \mathrm{G} \end{array}$	$\begin{aligned} & \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	As per 2303	40 lb	CONTR		V IA	$\begin{aligned} & \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	As per 2303 Test 1/day Systems Approach	40 lb	DME		
	Moisture Sensitivity	AS 319 Article 2303.02, E,2						V	$\begin{aligned} & \hline \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	Test 1st Sample at 500 tons then sample 1/10,000 tons per 2303 until $1^{\text {st }}$ sample accepted (test as needed)	70 lb	CTRL		
Compacted Mixture	Mat Density, Thickness \& Voids	$\begin{array}{r} 320,321 \\ 337 \end{array}$						V $\frac{\mathrm{IA}}{\mathrm{~V}}$		Lot 1 lot/project*	Min 8/lot	$\begin{aligned} & \text { RCE } \\ & \text { DME } \end{aligned}$		
	Joint Density	Article 2303.03, D, 4, b						V	$\begin{aligned} & \hline \text { RCE/ } \\ & \text { CONTR } \end{aligned}$	Each Joint = 1 Lot	4/lot	RCE		6-inch core per IM 511
	Smoothness	341	CONTR	100\%	100\%	CONTR		V	DME	10\%		DME		
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing		Cert- Certification Statement					RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						IA-Independent Assurance V-Verification	

[^5]

Sampling \& Testing Guide-Minimum Frequency
CONCRETE DRILLED SHAFT FOUNDATIONS Section 2433
Matls. IM 204
Appendix I

Quality samples not required when mix quantity is less than 50 cu . yd.
Sampling \& Testing Guide-Minimum Frequency
CONCRETE DRILLED SHAFT FOUNDATIONS
Section 2433
Sampling \& Testing Guide-Minimum Frequency
CONCRETE DRILLED SHAFT FOUNDATIONS
Section 2433
Matls. IM 204
Appendix I

Quality samples not required when mix quantity is less than 50 cu . yd.
NOTE: IA may be accomplished by system approach or on a per project basis (IA at 1 per project) at the discretion of the DME according to IM 207.
Sampling \& Testing Guide-Minimum Frequency
COLD-IN-PLACE RECYCLED ASPHALT PAVEMENT
Section 2318, DS-01076
Appendix K (US) Units

[^6]Sampling \& Testing Guide-Minimum Frequency
GRANULAR SURFACING/DRIVEWAY SURFACING
Sections 2312 \& 2315
Matls. IM 204
Appendix L (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			$\begin{gathered} \text { SAMPLE } \\ \text { BY } \end{gathered}$	FREQ.	$\begin{gathered} \text { SAMPLE } \\ \text { SIZE } \end{gathered}$	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{gathered} \text { S\&T } \\ \text { TYPE } \end{gathered}$	$\underset{B Y}{\text { SAMPLE }}$	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPECTION														
$\begin{aligned} & \hline \text { Class C } \\ & \text { Gravel (4120.03) } \\ & \hline \end{aligned}$	Gradation Quality	AS 209												
Class A Crushed Stone (4120.04)	Gradation Quality	AS 209												
Class B Crushed Stone (4120.05)	Gradation Quality	AS 209												
Class D Crushed Stone (4120.06)	Gradation Quality	AS 209												
Aggregate for Type B, AC or cold laid Bituminous Concrete (for driveways only)	Gradation Quality	AS 209												
Crushed Stone Base (For driveways only) (4122)	Gradation Quality	AS 209												
GRADE INSPECTION														
Dimensions	Thickness Width Cross Slope		RCE	3/mi.			Field Book							
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing		Cert- Certification statement					DME-District Materials Engineer CTRL-Central Materials Office						V-Verification	

METHOD OF ACCEPTANCE	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
RELATED IMs	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{gathered} \text { S\&T } \\ \text { TYPE } \end{gathered}$	SAMPLE	FREQ.	SAMPLE	TEST	REPORT	

MATERIAL OR CONSTRUCTION ITEM	TESTS
SOURCE INSPECTION	

SOURCE INSPECTION
SOURCE INSPECTION
 Matls. IM 204 Appendix M Sampling and Testing Guide-Minimum Frequency Section 2413
Sampling and Testing Guide-Minimum Frequency
CONCRETE BRIDGE FLOOR REPAIR \& OVERLAY \& SURFACING
Section 2413

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	S\&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	
GRADE INSPECTION														
Plastic Concrete (2413)	Air	318, 327						V	RCE	$\begin{aligned} & 1 / 100 \\ & \text { sy(2) } \\ & \hline \end{aligned}$		RCE		1/30yd ${ }^{3}$ for ready mix, min 1/day
	Slump	317, 327						V	RCE	$\begin{aligned} & 1 / 100 \\ & \text { sy(2) } \\ & \hline \end{aligned}$		RCE		$1 / 30 \mathrm{yd}^{3}$ for ready mix, min 1/day
	Density	358						V	RCE	See Note		RCE		For Class O PCC only.(1)
	Thickness								RCE	3/50 sy		RCE		
	Cylinders							V	DME	3/project		DME		Primary Projects only (Information Only)
Concrete Sealer $(2413.03, \mathrm{G})$	Quality	AS 491.12												
Hardened Concrete	Smoothness	341	CONTR	100\%		CONTR		V	DME	10\%		DME		

[^7] the remainder of the day's pour.
Sampling \& Testing Guide-Minimum Frequency
SURFACE TREATMENT (Seal Coat, Microsurfacing, Slurry, Joint Repair, Crack Filling, Fog Seal)Matls. IM 204

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{aligned} & \text { S\&T } \\ & \text { TYPE } \end{aligned}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPECTION														
Aggregates (4125)	Quality Gradation	AS 209												
Emulsions/ Cutbacks	Quality	AS 437												
Emulsion \& Aggregate	Compatibility	349							DME	1/ source	$\begin{aligned} & 1 \mathrm{qt} \mathrm{\&} \\ & 10 \mathrm{lb} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DME/ } \\ & \text { CTRL } \\ & \hline \end{aligned}$		Seal Coat
Emulsion \& Aggregate	Mix Design													Slurry \& Microsurfacing
GRADE INSPECTION														
Aggregate	Quality Gradation	Cert 301						V	DME	1/proj.	50 lb	CTRL		Seal Coat
Emulsion	Quality Residue Compatibility	$\begin{array}{r} \text { Cert } \\ 323,360 \\ 349 \end{array}$						$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & \text { RCE } \\ & \text { RCE } \end{aligned}$	$\begin{aligned} & 1 / 20,000 \mathrm{gal} \\ & 1^{\text {st }} \text { day }+1 / \text { week } \end{aligned}$	$\begin{aligned} & 1 \text { qt } \\ & 1 \text { qt \& } 10 \\ & \text { lb } \end{aligned}$	$\begin{aligned} & \text { DME } \\ & \text { DME } \end{aligned}$	(2)	(1) Seal Coat
Cutback	Quality Viscosity Anti-Strip	Cert 323 AS 323,374												
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing		Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						IA-Independent Assurance V-Verification		

[^8]Sampling \& Testing Guide-Minimum Frequency
Matls. IM 204
Appendix T

BASE REPAIR (2212), PAVEMENT REPAIR (PATCHES)
Sections $2529 \& 2530$
Supersedes October 15, 2013

MATERIAL OR CONSTRUCTION ITEM	TESTS		METHOD OF ACCEPTANCE \& RELATED IMs
SOURCE INSPECTION			
Aggregates Fine (4110)		AS	209
Aggregates Coarse (4115)		AS	209
Portland Cement (4101)	Quality	AS	401
Fly Ash (4108)	Quality	AS	491.17
GGBFS (Ground Granulated Blast Furnace Slag)	Quality	AS	491.14
$\begin{aligned} & \text { Curing Compound } \\ & \text { (4105) } \end{aligned}$	$\begin{aligned} & \text { Lab } \\ & \text { Tested } \end{aligned}$		405
Air Entraining Admixture (4103)	Quality	AS	403
Granular Backill	Gradation Quality	$\begin{aligned} & \text { AS } \\ & \text { AS } \end{aligned}$	$\begin{aligned} & \text { Cert } \\ & \text { Cert } \end{aligned}$
Drain Tubing	Quality	AS	443
Epoxy Grout		AS	491.11
Joint Seal (4136.02)	$\begin{aligned} & \hline \text { Lab } \\ & \text { Tested } \\ & \hline \end{aligned}$	AS	$\begin{aligned} & 436.01 \\ & 436.02 \end{aligned}$
$\begin{aligned} & \hline \text { Backer Rod } \\ & (4136.02) \end{aligned}$		AS	436.04
Steel Reinforcing	Quality	AS	451
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing			

SOURCE INSPECTION
※

Matls. IM 204
Appendix U (US) Units
Sampling \& Testing Guide-Minimum Frequency
GRANULAR SHOULDERS
Section 2121

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \\ \hline \end{gathered}$	REPORT	S\&T TYPE	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPECTION														
Aggregate (4120.02)	Gradation Quality	AS 209												
Aggregate (Paved Shoulder Fillets) (4120.07)	Gradation Quality	AS 209												
GRADE INSPECTION														
Dimensions	Thickness Width Cross Section	Template	RCE	3/mile 3/mile 3/mile		RCE	Field Book							
Aggregate (Paved Shoulder Fillets)	Gradation	Certification												
AS-Approved Source Cert- Certification Statement RCE-Resident Construction Engineer/Project Engineer ASD-Approved Shop Drawing DME-District Materials Engineer S\&T-Sampling \& Testing CTRL-Central Materials Office CONTR-Contractor														

Sampling \& Testing Guide-Minimum Frequency
Matls. IM 204
Appendix V (US) Units

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs		QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
				SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{aligned} & \text { S\&T } \\ & \text { TYPE } \end{aligned}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
SOURCE INSPECTION															
Drain Tubing (4143)	Quality	AS	443												
Rodent Guard (4143.01)		AS	443.01												
Subdrain Outlet (4143)		AS													
Porous Backfill (4131)	Quality Gradation	AS	209												
Granular Backfill (4133)	Quality Gradation	AS	209												
Class A (Outlets) (4120.04)	Quality Gradation	AS	209												
GRADE INSPECTION															
Drain Tubing (4143)	Quality	AS													
Engineering Fabric (4196)		AS	496.01												
Subdrain Outlet	Quality	AS	Cert												
Porous Backfill (4131)	Gradation	AS	Cert		Each Shipment										
Granular Backfill (4133)	Gradation	AS	Cert		Each Shipment										
Class A (Outlets) (4120.04)	Gradation	AS	Cert		Each Shipment										
$\begin{aligned} & \hline \text { Metal Posts } \\ & (4154.09) \end{aligned}$		Visual		RCE											
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing				Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						IA-Independent Assurance V-Verification	

Sampling \& Testing Guide-Minimum Frequency WATER POLLUTION CONTROL Matls. IM 204
Appendix W

MATERIAL OR CONSTRUCTION ITEM	TESTS	METHOD OF ACCEPTANCE \& RELATED IMs	QUALITY CONTROL					INDEPENDENT ASSURANCE \& VERIFICATION S\&T						REMARKS
			SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	$\begin{gathered} \text { S\&T } \\ \text { TYPE } \end{gathered}$	SAMPLE BY	FREQ.	SAMPLE SIZE	$\begin{gathered} \text { TEST } \\ \text { BY } \end{gathered}$	REPORT	
GRADE INSPECTION														
Seeds 4169		Seed Ticket (rural stabilizing)												
Fertilizer 4169		AS 469.03												
Inoculants 4169		Seed Manufacturer Recommendation												
Sticking Agent		Manufacturer Recommendation												
Sod 4169		Visual				RCE	Field Book							
Compost 4169		AS IM 469.10												
Straw Mulch 4169		Cert												
Hydraulic Mulch 4169		AS IM 469.10												
Stakes for Sod 4169		Visual				RCE	Field Book							
Wire Staples 4169		Visual				RCE	Field Book							
Wood Excelsior Mat 4169		AS IM 469.10												
Engineering Fabrics		AS IM 496.01					Field Book							
Silt Fence Wire and Posts (Std. Rd. Plan EC-201)		Visual				RCE	Field Book							
AS-Approved Source ASD-Approved Shop Drawing S\&T-Sampling \& Testing			Cert- Certification Statement				RCE-Resident Construction Engineer/Project Engineer DME-District Materials Engineer CTRL-Central Materials Office CONTR-Contractor						IA-Independent Assurance V-Verification	

October 21, 201 Supersedes Apr	$5,2014$	ACCEPTANCE OF SMALL QUANTITIES OF MATERIALS		TERIALS Matls. IM 204 Appendix X
Material		Maximum Quantity	Specifications	Alternate Acceptance Method
Aggregate, non-proportioned, noncritical		200 tons	IM 209	Approved Source and Visual
Asphalt, HMA	Mix	mixture bid item of 1000 tons	2303	Approved JMF, Contractor QC, and Contractor Certification
	Binder	mixture bid item of 1000 tons	4137	Approved Source and Supplier Certification
	Aggregate	mixture bid item of 1000 tons	4127	Approved Source, Producer Certification for gradation and quality, and Contractor QC.
Concrete, PCC Paving	Aggregate	Less than 2000 Square Yards of Concrete	4110, 4111, 4115	Approved Source, Producer Certification for gradation and quality, Agency gradation verification, and Contractor QC.
		Less than 10 Cubic Yards of Concrete or Non- structural items Defined in IM 528	4110, 4111, 4115	Approved Source, Producer Certification for gradation and quality, and Contractor QC.
	Portland Cement	Less than 2000 Square Yards of Concrete	4101	Approved Source and Producer Certification
	Fly Ash	Less than 2000 Square Yards of Concrete	4108	Approved Source and Producer Certification
	GGBFS	Less than 2000 Square Yards of Concrete	4108	Approved Source and Producer Certification
	Admixtures	Less than 2000 Square Yards of Concrete Yards		Approved Source

Sampling \& Testing Guide-Minimum Frequency				
October 21, 2014 Supersedes April 15, 2014				Appendix X
Concrete, PCC Structural	Aggregate	Less than 50 Cubic Yards of Concrete		Approved Source, Producer Certification for gradation and quality, Agency gradation verification, and Contractor QC.
		Less than 10 Cubic Yards of Concrete or Non- structural items Defined in IM 528		Approved Source, Producer Certification for gradation and quality, and Contractor QC.
	Portland Cement	Less than 50 Cubic Yards of Concrete		Approved Source and Producer Certification
	Admixtures	Less than 50 Cubic Yards of Concrete		Approved Source
Dowel Baskets, Epoxy-coated		25		Visual \& Field Check
Hardware for Timber		100 lbs .	4153.07	Visual
Joint Filler, Preformed		50 ft .	4136.03	Visual \& Dimension
Lighting Material-Conduit \& Fittings		100 ft	4185.10	Visual \& Brand Name
Paint, Bridge		5 gal .	4182	Visual \& Brand Name
Pipe, Welded Steel for Bridge Railing		100 ft .	4153.05	Letter of Compliance
Signing, Delineator posts		10	4186.10, C	Visual
Steel Reinforcement, Epoxy Coated (other than bridge decks)		Less than 5 tons	4151.03,B	Approved Source, Producer Certification
Steel Reinforcement, Uncoated		Less than 45 tons	4151	Approved Source, Producer Certification
Steel Reinforcement, Stainless		Less than 1 ton	4151	Approved Source, Producer Certification

October 21, 2014 Supersedes April 15, 2014		Sampling \& Testing Guide-Minimum Frequency SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE						Matls. IM 204 Appendix Z Other Details
Material	IM	Contact	Spec.	Sample Size	Sampled By	Basis of Acceptance	Verification	
Fence, Tie \& Tension Wire			4154.05			Visual Approval by RCE		
Fence, Chain Link Fabric	454.10	Vacant	4154.03	1/source/yr		Approved Source/ Certification Statement	Project	
Fence, Chain Link Fittings			4154.11			Visual Approval by RCE		
Fence, Chain Link Posts, Braces, \& Rails	454.10		4154.10	1/source/yr		Approved Source/ Certification Statement	Project	
Fence, Field Fence Fabric			4154.02			Visual Approval by RCE		
Fence, Gate			4154.12			Visual Approval by RCE		
Fence, Orange Mesh Safety	488.03	J. Putherickal	4188.03			Approved Source		
Fence, Silt-See Erosion Control								
Fence, Staples			4154.06			Visual Approval by RCE		
Fence, Steel Line Posts			4154.09			Visual Approval by RCE		
Fence, Wood Fence Post	462	C. Ouyang	4154.07			Approved Source/Certification of Grade/Certified Treatment Test Report		
Fertilizer-See Erosion Control								
Fly Ash	491.17	C. Ouyang	4108	15 lbs .	DME	Approved Source/ Certification Statement	Project Source	Verification on paving only
Galvanized Items		Vacant	4100.07		DME	Test Report by District Materials		
GGBFS	491.14	C. Ouyang	4108.02			Approved Source/ Certification Statement	Source Project	
Grating (Aluminum)		Vacant	4187.01, A			Approved Shop Drawing \& Fabrication Report		
Grout, Hydraulic Cement	491.13	C. Ouyang				Approved Source		
Grout, Polymer	491.11	C. Ouyang				Approved Source		
Guardrail, Cable		Vacant	4155.03	6 ft .	DME	Test Report by Central Lab		

October 21, 2014 Supersedes April 15, 2014		Sampling \& Testing Guide-Minimum Frequency SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE					Matls. IM 204 Appendix Z	
Material	IM	Contact	Spec.	Sample Size	Sampled By	Basis of Acceptance	Verification	Other Details
Plant Material, Fertilizer	469.03	J. Putherickal	4170.09, B			Approved Source		
Plant Material, Mulch	470	J. Putherickal C. Ouyang	4170.09, D		RCE	Field Review Report		
Plant Materials, Plants	470		$\begin{aligned} & 4170.01- \\ & 4170.08 \end{aligned}$		Roadside Development	Field Review Report		Rpt. Issued-Roadside Development
Portland Cement Concrete Premix Pack	447					Approved Source/Certification Statement	Source	
Portland Cement, All Types	401	C. Ouyang	4101	10 lbs.	DME	Approved Source/Certification Statement	Project Source	
Railing, Bridge			4153.05			Approved Source/Approved Shop Drawing/Fabrication Report		
Reflective Sheeting-See Signing Material								
Release Agent			491.15	C. Ouyang				Approved Source
Sealant, Traffic Loop-See Lighting Material								
Seed-See Erosion Control								
Signing Material, Delineator Posts					4186.10, C	1 each supplier	DME	Test Report
Signing Material, Delineators	486.07	J. Putherickal	4186.11			Approved Source	Project	
Signing Material, Finished Sign	486	J. Putherickal	4186			Shipping Report/Approved Source/Certification Statement	Source	
Signing Material, Fasteners			4186.09			Fabrication Report		
Signing Material, Reflective	486.03	J. Putherickal	4186.03			Approved Source	Source	
Signing Material, Sign Panels			4186.02			Approved Shop Drawing \& Shipping Report		
Signing Material, Sign Support Structures	557	Vacant	4187			Approved Source/Approved Shop Drawing/Fabrication Report		
Signing Material, Stainless Steel Fasteners	453.07	Vacant		1 per size per proj.	DME	Approved Source/Mill Certification	Project	

October 21, 2014 Supersedes April 15, 2014			Sampling \& Testing Guide-Minimum Frequency SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE					Matls. IM 204 Appendix Z				
Material	IM	Contact					Spec.	Sample Size	Sampled By	Basis of Acceptance	Verification	Other Details
Steel Reinforcement, Stainless	452	Vacant Vacant	4151	6 ft .	DME	Approved Source/Certification Statement	Project	Sample when project quantity $>=1$ ton.				
Steel Reinforcement, Uncoated	451		4151	* 6 ft . of most common	DME	Approved Source/Mill Certification	Project	Sample when project quantity $>=45$ ton.				
Steel Reinforcement, Wire Mesh	451		4151.04	$2 \mathrm{ft} . \times 2 \mathrm{ft}$.	DME	Approved Supplier or Distributor. Steel Reinforcement/ Mill Certification	Supplier	1 sample per source per year				
Steel Mechanical Splicers for Reinforcement	451	Vacant				Approved Source/Mill Certification/Epoxy Certification	Project	Need: Certification Statement, Project \#, Quantity, Heat \#				
Steel Structural	$\begin{aligned} & 557,561 \\ & \text { to } 565 \end{aligned}$		$\begin{aligned} & 2408 \\ & 4152 \end{aligned}$			Approved Source/Approved Shop Drawing/Fabrication Report/Mill Certifications						
Step Irons for Utility Access			4149.04, L			Fabrication Report						
Structural Items, Other						Approved Shop Drawing \& Fabrication Report						
Structural Plate (Arches)	444	Vacant	4144	Visual	RCE	Approved Source/Certification Statement						
Studs, Shear	453.10	Vacant				Approved Source/ Mill Certification						
Tape, Pavement Marking	483.06	J. Putherickal	2527.02, D			Approved Source						
Torque Calibration Machine (skidmore)		Vacant	2408.03, S	Calibrate every 12 mo.	CTRL	Test Report						
Torque Wrench		Vacant	2408.03, S	Calibrate every 12 mo.	CTRL	Test Report						
Traffic Signalization, Electrical Tests			$\begin{aligned} & \hline 2525.03, \mathrm{E} \\ & 2525.03, \mathrm{H} \end{aligned}$		Contractor	Test Report (Contractor) Form \#820928						
Water			4102	1 qt. per source	DME	Test Report or City Water Supply						
Wire \& Cable-See Lighting Material												

Sampling \& Testing Guide-Minimum Frequency								
October 21, 2014 Supersedes April 15, 2014			SUPPLEMENTAL GUIDE - BASIS OF ACCEPTANCE					Appendix Z
Material	IM	Contact	Spec.	Sample Size	Sampled By	Basis of Acceptance	Verification	Other Details
Watermain, Appurtenances				4150.05			Catalog Cut/ Mill Certification	
Watermain, Ductile Iron Pipe			4150.02			Mill Certification		
Watermain, Ductile Iron Pipe Fittings			4150.02			Catalog Cut/ Mill Certification		
Watermain, Fire Hydrant Assembly			4150.04			Catalog Cut/ Mill Certification		
Watermain, PVC Pipe	446	J. Putherickal	4150.02			Approved Source/Catalog Cut/ Certification Statement		
Watermain, PVC Pipe Fittings	446	J. Putherickal	4150.02			Approved Source/Catalog Cut/ Certification Statement		
Watermain, Valves			4150.03			Catalog Cut/ Mill Certification		
Wood, Hardware for Timber Structure	462	J. Putherickal	4153.07	1 ea. type		Test Report		
Wood, Treated Posts	462	J. Putherickal	4164			Approved Source/Certification of Grade/Certified Treatment Test Report		
Wood, Treated Timber \& Lumber	462		4162			Approved Source/Certification of Grade/Certified Treatment Test Report		
Wood, Untreated Timber \& Lumber	462	C. Ouyang	4162	Visual	RCE	Quality grad mark or certification of grade on items requiring grade		

PROJECT
INSPECTION

GENERAL AGGREGATE SOURCE INFORMATION

GENERAL

Only those sources which have been sampled or tested within the last ten years are listed. This listing additionally ranks sources in accordance with a frictional classification as defined herein for aggregates used in Hot Mix Asphalt (HMA) construction, durability class for coarse aggregates used in Portland Cement Concrete (PCC) construction, and Approved Fine Aggregate. Upon request, new sources or different combinations of beds within an existing source can be evaluated for classification. These rankings do not in any way waive the normal quality requirements for the particular types of aggregates indicated in contract documents.

Aggregate sources are continuously updated and the most current version of this IM can be found on the Materials Approved Product List Enterprise (MAPLE) website at https://maple.iowadot.gov/.

PORTLAND CEMENT CONCRETE AGGREGATES

Aggregates shall be produced from sources approved in accordance with the requirements of Office of Materials IM 409. The engineer may approve scalping of some portion of the coarser fraction.

All aggregates produced and inspected for intended use in contracts under lowa Department of Transportation Specifications shall be stored in identifiable stockpiles unless they are being delivered as produced.

DURABILITY CLASSIFICATION

The coarse aggregates have been divided into three classes in accordance with their durability level as determined by performance or laboratory testing.

Class 2 durability aggregates will produce no deterioration of pavements of the non-interstate segments of the road system after 15 years and only minimal deterioration in pavements after 20 years.

Class 3 durability aggregates will produce no deterioration of pavements of non-interstate segments of the road system after 20 years of age and less than 5% deterioration of the joints after 25 years.

Class 3i durability aggregates will produce no deterioration of the interstate road system after 30 years of service and less than 5% deterioration of the joints after 35 years.

NOTE: Those sources with a "B" in their durability class designation are approved for $1 / 2 \mathrm{in}$. Bridge Deck Overlay/Repair material.

HOT MIX ASPHALT AGGREGATES

Aggregates for HMA construction have been classified into five main functional types in accordance with their frictional characteristics. Those aggregates with the potential to develop the greatest amount of friction under traffic conditions are classified as Type 1 with the potential for friction decreasing as the type number increases. One or more friction types may be specified for use in pavement surface courses. If a type is not specified in the contract documents, Type 5 or better will be acceptable. Tentative bed limitations are shown in this publication.

The frictional classification types are listed and defined in order of descending quality as follows.
Type 1: Aggregates, which are generally, a heterogeneous combination of minerals with coarsegrained microstructure of very hard particles (generally, a Mohs hardness range of 7 to 9) bonded together by a slightly softer matrix. These aggregates are typified by those developed for and used by the grinding-wheel industry such as calcined bauxite (synthetic) and emery (natural). They are not available from lowa sources. Due to their high cost, these aggregates would be specified only for use in extremely critical situations.

Type 2: Natural aggregates in this class are crushed quartzite and both fine and coarse-grained crushed igneous rocks. The mineral grains in these materials generally have a Mohs hardness range of 5 to 7 . Synthetic aggregates in this class are some air-cooled steel furnace slags and others with similar characteristics. For all L2 asphalt mixtures, pipestone and sandstone in quartzite may not exceed 1 percent. For all other asphalt mixtures, pipestone and sandstone in quartzite may not exceed 5 percent.

Type 3: Natural aggregates in this class are crushed gravels. The crushed gravels shall contain 40% or more igneous and metamorphic particles. Synthetic aggregates in this class are the expanded shales with a Los Angeles abrasion loss less than 35 percent.

Type 4: Aggregates crushed from dolomitic or limestone ledges in which 80 percent of the grains are 20 microns or larger. The mineral grains in the approved ledges for this classification generally have a Mohs hardness range of 3 to 4 . For natural gravels, the Type 5 carbonate (see below) particles, as a fraction of the total material, shall not exceed the non-carbonate particles by more than 20 percent.

Type 5: Aggregates crushed from dolomitic or limestone ledges in which 20 percent or more of the grains are 30 microns or smaller.

SOURCE LISTINGS - Explanation

NOTE: - number indicates additional source restrictions (bottom of page) L=limestone ($<15 \% \mathrm{MgO}$) and $\mathrm{D}=$ dolomite ($\geq 15 \% \mathrm{MgO}$), defines rock type for L2 surface mix designs.

Bed numbers shown for PCC aggregate are those on the formal source approval letter. Beds shown for HMA sources are those which have been used or have potential for use and are of the designated friction type.

Frictional Classification - as indicated on page 2 Hot Mix Asphalt - Type \underline{A} and \underline{B} \qquad
Durability Class for Portland Cement Concrete C-oarse Aggregate ("B" indicates acceptability for Bridge Deck Overlay/Repair) Fine Aggregate ($\mathrm{X}=\mathrm{PCC}$ and HMA Approval, $\mathrm{H}=$ HMA use only)

NOTE 1: AASHTO 57 GRADATION MAXIMUM

NOTE 1: TOP 17.0' OF BED 2
NOTE 2: TOP 6.0' OF BED 9

NOTE 1: CEDAR FORK LEDGE
NOTE 2: 1.25 INCH MAXIMUM TOP SIZE

APPROVED PRODUCERS WITH QC PROGRAMS

PRODUCER
STREET ADDRESS
CITY, STATE, ZIP
PHONE/FAX NUMBER

A

A-LINE CRUSHING SERVICE ACME FUEL \& MATERIALS CO AGGREGATE INDUSTRIES AGGREGATE MATERIALS CO AGGREGATES INC ALLIANCE MATERIALS INC ANDERSON SAND \& GRAVEL CO ARCADIA LIMESTONE CO

B

BMC AGGREGATES LC
BARD CONCRETE CO
BARD-KUHLMAN
BEDROCK GRAVEL CO
BELLCO OF NEBRASKA INC
BELLEVUE SAND \& GRAVEL CO
BENTON'S SAND \& GRAVEL
BIG STONES QUARRY, INC
BOON CONSTRUCTION CO BOYER SAND \& ROCK INC BRIDGEPORT MATERIALS BROCKMAN SAND CO BRUENING ROCK PRODUCTS INC ISKYLINE CONSTRUCTION BUILDERS SAND \& CEMENT CO

C

C.A.P RECYLCING
C. J. MOYNA \& SONS INC CANTERA AGGREGATES CARNARVON SAND \& GRAVEL CEMSTONE PRODUCTS COMPANY CENTRAL STONE CO \#1 CESSFORD CONST CO

CESSFORD CONST CO - SE DIV
COHRS CONSTRUCTION INC
CONCRETE INC
CONCRETE MATERIALS CO CONRECO INC

COOTS MATERIALS CO INC
CORELL RECYCLING
COUNTY MATERIALS CORP
CRAWFORD QUARRY CO
CROELL REDI MIX
CRUSHED AGGREGATE PRODUCTS

1025 CENTER STREET 2544 PETTIBONE AVENUE 2915 WATERS ROAD STE 105 1400 E $12^{\text {TH }}$ STREET 6101 BLAIRS FERRY ROAD NE 1822 WOLVERINE RD 2578 270 ${ }^{\text {TH }}$ AVENUE 19011 CRYSTAL AVENUE

101 BMC DRIVE
2021 325 ${ }^{\text {TH }}$ AVENUE
2021 325 ${ }^{\text {TH }}$ AVENUE
1002 HWY 59 SOUTH
2826 SOUTH AVENUE
29427 HWY 52
1410 CENTER STREET
2487 290TH STREET
N 5399 STATE HWY 73
4162 BIRCH AVENUE
2241 PORT NEAL ROAD
2397 263RD AVENUE-POB 312
325 WASHINGTON STREET-POB 127
104 WESTERN AVENUE

3150 LEWISTON ST
24412 HWY 13
1847 100TH STREET
$811 \mathrm{~N} 10^{\text {TH }}$ ST
2025 CENTRE POINT BLVD- SUITE 300
RR 1-POB 236
2320 ZELLER AVENUE
3808 OLD HWY 61
15700 NORTH TRADEWIND DRIVE
1710 EAST MAIN ST
1201 WEST RUSSELL
4901 G STREET
1700 WEST D STREET
200 SOUTH $13^{\text {TH }}$ STREET
205 NORTH ST-POB 100
HWY 94 NW-POB 1027
POB 430
1720 E AVE

CEDAR FALLS, IA 50613	$319-277-3001$
MUSCATINE, IA 52761	$563-263-1105$
EAGAN, MN 55121	$651-686-2302$
DUBUQUE, IA 52001	$563-583-6642$
CEDAR RAPIDS, IA 52411	$319-395-0050$
DIXON, IL 61021	$815-284-2130$
DEWITT, IA 52742	$563-659-5506$
ARCADIA, IA 51430	$712-689-2299$

ELK RUN HEIGHTS, IA 50707 319-235-6583
$\begin{array}{ll}\text { SIOUX CITY, IA } 51105 & 712-870-0243 \\ \text { ELKADER, IA } 52043 & 563-245-1442\end{array}$
ELKADER, IA 52043
CORYDON, IA 50060
DENISON, IA 51442
MENDOTA SPRINGS, MN 55120-1221
HANNIBAL, MO 63401-9622
LE GRAND, IA 50142
BURLINGTON, IA 52601
SPIRIT LAKE, IA 51360
MARSHALLTOWN, IA 50158
SIOUX FALLS, SD 57104
OMAHA, NE 68117
VINTON, IA 52349
WEST DES MOINES, IA 50265
MARATHON, WI 54448
CEDAR RAPIDS, IA 52406
NEW HAMPTON, IA 50659
RED OAK, IA 51566

319-235-7065
563-875-7145
563-875-7860
563-875-7145
563-875-7860
712-676-3752
712-322-8501
712-322-8526
563-872-3886
319-266-2621
319-266-5926
515-988-4106
515-440-0944
712-552-2308
712-253-8449
319-372-7138
563-382-2933
563-382-8375
563-322-1757

712-579-5062

APPROVED PRODUCERS WITH QC PROGRAMS

PRODUCER
STREET ADDRESS
CITY, STATE, ZIP
PHONE/FAX NUMBER

D

DAVE'S SAND \& GRAVEL INC DELONG RECYCLING, INC DES MOINES ASPHALT \& PAVING DOUDS STONE LLC

DUININCK BROS INC
E
ELDER CORPORATION

F

FALK L R- CONSTRUCTION CO
FALKSTONE LLC
FLEWELLING SAND \& GRAVEL FLOYD RIVER MATERIALS FORT CALHOUN STONE CO

FORT DODGE ASPHALT CO

G

GEHRKE QUARRIES INC
GEO TECH MATERIALS
GRAY QUARRIES INC
GREAT RIVER MATERIALS, LLC
GREENE LIMESTONE CO
GRIMES ASPHALT AND PAVING

H
HAHN READY MIX
HALLETT MATERIALS CO

HANK STALP GRAVEL CO

HARSCO METALS
HAWKEYE PAVING CORPORATION HEARTLAND ASPHALT INC HEIMES EXCAVATING \& UTIL CO HIGMAN SAND \& GRAVEL INC HORSFIELD MATERIALS, INC.

I
IDEAL SAND CO
IOWA DRAINAGE INC
K
K\&L CONSTRUCTION INC KERFORD LIMESTONE CO KNIFE RIVER MIDWEST LLC

RR 2-POB 58A
$1320 \mathrm{~N} 8^{\text {Th }}$ AVENUE, POB 488
5109 NW BEAVER DRIVE
13133 ANGLE RD SUITE B-POB 187
$4086^{\text {TH }}$ ST-POB 208

5088 EAST UNIVERSITY AVE

227 W 4 ${ }^{\text {TH }}$ STREET-POB 189
227 W $4^{\text {TH }}$ STREET-POB 189
1157 HWY 140
32138 HICKORY AVE
7001 US HWY 75-POB 284
$25167^{\text {TH }}$ AVENUE SOUTH

POB 521
13091 EAGLE DRIVE
POB 386
$1444320^{\text {TH }}$ AVE
1211 SOUTH MAIN ST-POB 687
1001 SE 37 ${ }^{\text {TH }}$ ST-POB 139

POB 1107
5550 NE $22^{\text {ND }}$ STREET-POB3365

1598 RIVER ROAD

1770 BILL SHARP BLVD, GATE 4
801 42ND STREET S
2601 SOUTH FEDERAL AVENUE
9144 SOUTH $147^{\text {TH }}$ STREET
POB 438
505 EAST MAIN ST-POB 305

3902 MT PLEASANT ST-POB 416
703 E. GILMAN ST- POB 7

501 S. RIDGE ROAD
36110 FLETCHER ST
600 HIGHWAY 175-P.O. BOX 229

HARTLEY, IA 51346	$712-834-2515$	
WASHINGTON, IA 52353	$319-653-3334$	
JOHNSTON, IA50131	$515-262-8296$	
OTTUMWA, IA 52501	$641-683-1671$	
	$641-683-1673$	(FAX)
PRINSBURG, MN 56281	$320-978-6011$	
DES MOINES, IA 50327		
	$641-266-3111$	
ST ANSGAR, IA 50472-0189	$641-713-4569$	
ST ANSGAR, IA 50472-0189	$712-873-3174$	
MOVILE, IA 51039	$712-233-1111$	
SIOUX CITY, IA 51101	$402-426-4254$	
BLAIR, NE 68008	$402-468-4380$	
	$402-468-4388$	(FAX)
FORT DODGE, IA 50501	$515-573-3124$	

641-858-3821 641-858-2564

217-847-2712
319-528-4065 319-528-4063
641-228-4255 641-228-4061 (Shop) 515-986-3649

563-263-6467
515-266-9928
515-266-9857
800-838-2615
402-372-5491
800-372-5491
402-372-5477
563-506-0634
563-355-6299
641-424-1733
402-894-1000
712-568-2181
563-876-3335

319-754-4747
641-892-4330

SERGEANT BLUFF, IA 51054
712-943-2939
WEEPING WATER, NE 68463 402-267-2415
STRATFORD, IA 50249

515-838-2475

APPROVED PRODUCERS WITH QC PROGRAMS			
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBER
L			
L G EVERIST INC	POB 9	DELL RAPIDS, SD 57022	605-428-5419
			605-428-3012 (FAX)
L\&M SAND \& GRAVEL INC	$4262^{\text {ND }}$ AVENUE NE	LE MARS, IA 51031	712-546-5359
L\&W QUARRIES INC	POB 335	CENTERVILLE, IA 52544	641-437-4830
			641-437-4837 (FAX)
LA HARV CONST CO INC	POB 267	FOREST CITY, IA 50436	641-581-3643
LESSARD CONTRACTING INC	POB 705	SERGEANT BLUFF, IA 51054	712-252-4131
LINWOOD MINING \& MINERALS CORP	5401 VICTORIA AVE, SUITE 110	DAVENPORT, IA 52807	563-359-8251
			800-798-8251 (T-F)
			563-344-3730 (FAX)
LOUNSBURY LANDSCAPING	6000 RACCOON RIVER DR	WEST DES MOINES, IA 50266	515-225-7100
LUNDELL CONSTRUCTION CO., INC	1420 EAST RICHLAND	STORM LAKE, IA 50588	712-732-4059
LYMAN-RICHEY SAND \& GRAVEL	4315 CUMING STREET	OMAHA, NE 68131	402-558-2727
M			
MALLARD SAND \& GRAVEL	POB 638	VALLEY, NE 68064	402-359-5287
MANATT'S INC	1755 OLD 6 ROAD-POB 535	BROOKLYN, IA 52211	641-522-9206
			641-522-9407 (FAX)
			641-522-5594 (FAX)
MANATT'S SAND \& GRAVEL	1928 340TH STREET-POB 87	TAMA, IA 52339	641-484-4022
MARENGO READY MIX INC	POB 121	MARENGO, IA 52301-0121	319-642-3811
MARTIN COMMERCIAL ENTERPRISES		DAVENPORT, IA 52807	563-529-2223
MARTIN MARIETTA AGGREGATES	11252 AURORA AVENUE	DES MOINES, IA 50322	515-254-0030
			800-332-5433 (T-F)
			515-254-0035 (FAX)
MASS CUSTOM HAULING \& CRUSHING	1207 W. 10 ${ }^{\text {TH }}$ ST.	MILAN, IL 61264	309-756-0217
MATX INC	110 CLUBRIDGE PLACE	COLORADO SPRINGS, CO 80906	
MCALISTER AGGREGATES LLC	1924 HWY 141- POB 157	BAYARD, IA 50029	800-642-6653
			712-651-2018 (FAX)
MELLER EXCAVATING \& ASPHALT	3321 190 ${ }^{\text {TH }}$ STREET	FORT MADISON, IA 52627	319-372-7410
MIELKE'S QUARRY	13303 SPOOK CAVE RD	MCGREGOR, IA 52157	563-539-4227
MILESTONE MATERIALS	$92010{ }^{\text {TH }}$ AVE NORTH-POB 189	ONALASKA, WI 54650	608-783-6411
			608-783-4311 (FAX)
MOBILE CRUSHING \& RECYCLING	2663 OSCEOLA AVENUE	OTHO, IA 50569	515-576-8080
MOHR SAND, GRAVEL \& CONST. LLC	POB 232, 104 ASH STREET	LOHRVILLE, IA 51453	712-210-7078
M.R. PAVING AND EXCAVATION	2020 NORTH SPRING ST- POB 787	NEW ULM, MN 56073	507-354-4171
MURPHY HEAVY CONTRACTING CORP	101 ROOSEVELT ST	ANITA, IA 50020	712-762-3386
MYRL \& ROY'S PAVING INC	1300 NORTH BAHNSON AVENUE	SIOUX FALLS, SD 57103	605-334-3204
			605-334-0468 (FAX)
N			
NELSTAR	210 WALNUT	MERIDEN, IA 51037	712-443-8832
NEW ULM QUARTZITE QUARRY	ROUTE 5-POB 21	NEW ULM, MN 56073	507-354-2925
			507-359-7870 (FAX)
NORRIS QUARRIES LLC	219 3RD ST-POB 190	CAMERON, MO 64429	816-324-0310
NORTHERN CON-AGG, LLP	1450 131 ${ }^{\text {ST }}$ STREET	LUVERNE, MN 56156	507-283-2124
NORTH IA SAND \& GRAVEL INC	18237 KILLDEER AVENUE	MASON CITY, IA 50401	641-424-5591
			641-423-1894 (FAX)
NORTHWEST ILLINOIS CONST LLC	1600 REGAN RD	ROCK FALLS, IL 61071	815-626-5192
NORTHWEST MATERIALS	16 NORTH TAFT-POB 632	FORT DODGE, IA 50501	515-573-8921
NORTHWEST R/M CONCRETE INC	6340 180 ${ }^{\text {TH }}$ STREET	OCHEYEDAN, IA 51354	712-758-3683
NU AGGREGATES	300 NORKA DRIVE	AKRON, IA 51001	712-568-2181
O			
ORTONVILLE STONE CO	POB 67	ORTONVILLE, MN 56278	320-839-6131

APPROVED PRODUCERS WITH QC PROGRAMS			
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBER
P			
PATRICK M. PINNEY CONTRACTORS	1915 FLOYD BLVD-POB 5107	SIOUX CITY, IA 51102	712-252-2774
PAUL NIEMANN CONST CO	24541 150h STREET-POB 128	SUMNER, IA 50674-0128	563-578-3261
			563-578-3263 (FAX)
PBI CONST	4953 D AVE	MARCUS, IA 51035	712-376-4886
PELLA CONST CO LTD	POB 25	PELLA, IA 50219	641-628-3840
PERU QUARRY	2587 265 ${ }^{\text {TH }}$ ST	PERU, IA 50222	515-468-0315
PETERSON CONTRACTORS INC	104 BLACKHAWK-POB A	REINBECK, IA 50669	319-345-2713
PETTENGILL CONC \& GRAVEL INC	800 NORTH BOONE	ROCK RAPIDS, IA 51246	712-472-2571
PNB PROCESSORS, LLC	POB 80	DENMARK, IA 52624	319-470-0050
PRAIRIE SAND \& GRAVEL	POB 210	PRAIRIE DU CHIEN, WI 53821	608-326-6471
PRESTON READY MIX CORP	POB 399	PRESTON, IA 52069	563-689-3381
Q			
QUALITY CONCRETE CO	327 17 ${ }^{\text {TH }}$ AVENUE SOUTH	CLINTON, IA 52732	563-242-3524
R			
RAINBOW QUARRY LLC	800 VOLNEY RD	MONONA, IA 52159	563-535-7606
RECYCLED AGGREGATE PROD CO	2131 18 ${ }^{\text {TH }}$ STREET	SIOUX CITY, IA 51105	712-252-7732
REDINGS GRAVEL \& EXCAVATING CO	2001 EAST OAK STREET	ALGONA, IA 50511	515-295-3661
RED ROCK QUARRY	12226 KNOX AVE.	SANBORN, MN 56083	507-648-3382
REILLY CONSTRUCTION CO	110 MAIN STREET-POB 99	OSSIAN, IA 52161	563-532-9211
			563-532-9759 (FAX)
RIEHM CONSTRUCTION CO INC	$23409^{\text {TH }}$ STREET SW	WAUKON, IA 52172	563-568-3314
RIVER CITY STONE	3747 CONSTRUCTORS COURT-POB 160	KEILER, WI 53812-0160	608-568-3433
RIVER PRODUCTS CO INC	3273 DUBUQUE ST NE- POB 2120	IOWA CITY, IA 52244-2120	319-354-1090
			319-353-6606 (FAX)
RIVERSTONE GROUP INC	$17015^{\text {TH }}$ AVENUE	MOLINE, IL 61265	309-757-8250
			309-757-8257 (FAX)
ROCK HARD CONCRETE RECYCLING	214 E. MAIN ST-POB 217	WEST BRANCH, IA 52358	319-631-3903
ROCKY MOUNTAIN ENTERPRISES	6515 COUNTY HIGHWAY H	ATHENS, WI 54411	715-257-1440
			715-257-1140 (FAX)
S			
S\&A CONSTRUCTION LTD	POB 20	ALLENDALE, MO 64420	660-786-2233
S\&G MATERIALS	4213 SAND ROAD SE	IOWA CITY, IA 52240	319-354-1667
SAVANNA QUARRY, INC	9859 SCENIC BLUFF ROAD	SAVANNA, IL 61074	815-273-4208
SCHILDBERG CONSTRUCTION CO	POB 358	GREENFIELD, IA 50849	641-743-2131
SCHMILLEN CONST INC	4772 C AVENUE	MARCUS, IA 51035-0488	712-376-2249
SHIPLEY CONTRACTING	2671 240TH STREET	FORT MADISON, IA 52625	319-372-1804
SIEH SAND \& GRAVEL	101 WEST 18 ${ }^{\text {TH }}$ STREET-POB 1503	SPENCER, IA 51301	712-836-2244
			712-262-4580
SOUTHERN MN CONST CO, INC.	1100 MARCUS ST-POB1100	FAIRMONT, MN 56031	507-235-3321
SPENCER QUARRIES	25341 430 ${ }^{\text {TH }}$ AVENUE	SPENCER, SD 57374	605-246-2344
STENSLAND GRAVEL CO	1741 ASHLEY AVE	LARCHWOOD, IA 51241	712-477-2280
STERZINGER CRUSHING INC	3273 2900 ${ }^{\text {TH }}$ AVE	TAUNTON, MN 56291	
STONER SAND	33463 EAST 250TH	RIDGEWAY, MO 64481	660-824-4211
STRATFORD GRAVEL INC	3378 XAVIER AVE	DAYTON, IA 50530	515-571-3133
STRONG ROCK \& GRAVEL	721 SOUTH FRONT ST	LANSING, IA 52151	563-538-4603
SWAIN CONSTRUCTION INC	6002 NORTH 89 ${ }^{\text {TH }}$ CIRCLE	OMAHA, NE 68134	402-571-1110
SWAN ROCK \& SAND PRODUCTS, LLC	POB 111	CINCINNATI, IA 52549	641-658-2474
			641-777-1233 (CELL)

APPROVED PRODUCERS WITH QC PROGRAMS			
PRODUCER	STREET ADDRESS	CITY, STATE, ZIP	PHONE/FAX NUMBER
T			
TIEFENTHALER AG-LIME INC	11975 HAWTHORNE AVENUE-POB 157	BREDA, IA 51436	712-673-2686
TRI CITY BLACKTOP	425 S. DEVILS GLEN RD	BETTENDORF, IA	563-359-3491
TRISTAR QUARRIES	11278 474 ${ }^{\text {TH }}$ ST	PLANO, IA 52581	
TUBE CITY IMS CORP	1500 WEST 3RD STREET	WILTON, IA 52778	563-732-4010
U			
ULLAND BROTHERS INC	2400 MYERS ROAD	ALBERT LEE, MN 56007	507-373-1960
			507-433-1819
UNITED CONTRACTORS, INC	6678 NW 62ND AVE - P.O. BOX 347	JOHNSTON, IA 50131	515-276-6162
V			
VALLEY SAND \& GRAVEL	POB 9	ROCK VALLEY, IA 51247	712-476-2063
W			
WEATHERTON CONTRACTING	307 N 16 ${ }^{\text {TH }}$ ST-POB151	BERESFORD, SD 57004	605-763-2078
WEBER STONE CO INC	12791 STONE CITY ROAD	ANAMOSA, IA 52205	319-462-3581
			319-462-3585 (FAX)
WENDLING QUARRIES INC	POB 230	DEWITT, IA 52742	563-659-9181
			563-659-3393 (FAX)
WEST DES MOINES SAND CO	3888 WALNUT WOODS DR	DES MOINES, IA 50265	515-287-2340
WESTERN ENGINEERING COMPANY	POB 350	HARLAN, IA 51537	712-755-5191
WETHERELL SAND \& GRAVEL	POB 37	PETERSON, IA 51047	712-260-8556
WILTGEN CONSTRUCTION CO	113 EAST MAIN STREET-POB 817	CALMAR, IA 52132	563-562-3301
			800-365-3301 (T-F)
WINN CORP SAND \& GRAVEL	2334 JUNIPER AVENUE	FAIRFIELD, IA 52556	641-693-3333
WRIGHT MATERIALS CO	1127 HWY 69-POB 244	BELMOND, IA 50421	641-444-3920
Z			
ZUPKE SAND \& GRAVEL	17963 150 ${ }^{\text {TH }}$ STREET	RANDALIA, IA 52164	563-428-4444

Remark

IOWA DEPARTMENT OF TRANSPORTATION

Fine Sample

	Fine Sample			Sieve Acc. $=$		100.0
	Orig. Dry Weight:			506.5		
	Dry Wt. Washed:			504.3		
	Washing Loss:			2.2		
Sieve Size	$\begin{gathered} \text { Wt. } \\ \text { Retd. } \end{gathered}$	\% Retd.		$\begin{gathered} \% \\ \text { Passing } \end{gathered}$	ReportedFinal	Specs.
			Final			
3/8	0.0	0.0		100.0	100	100
4	14.5	2.9		97.1	97	90-100
8	35.5	7.0		90.1	90	70-100
16	74.5	14.7		75.4	75	
30	141.1	27.9		47.5	48	10-60
50	175.9	34.7		12.8	13	
100	58.3	11.5		1.3	1.3	
200	4.3	0.8		0.5	0.5	0-1.5
Wash	2.2					
Pan	0.4	0.5				
Total	506.7	100.0				

99.8 \%

 Wash Sample

Recelved subject to the tems of bany written transportation contract between the Carrier(s) transporting this shipment and lifarge Norin Amenca or its affliates (Shippert on Itre date of issue of this Bill of Lading, the property described hereoh, in apparent good order, except as noted, manked, consigned and destined as set forth hierecn, which said Cariler'sisgrees to cary with reasonable dispatch to such destination. Carrier(s) shall verify the weight of the shipment and Carrier(s) agree to indemnify Shipper from any loss, cost or expense (including, bus not immited to, attomeys fees) arising from ocrelating Page Carrier(s), trafsporta of a load that exceeds the maximum allowsble weight. Consignee accepts such shipment in accordance with Latarge's standard terms and consitions.
NON-RECOURSE: If Shipper signs this provision, Shipper shall not be liable for freight charges and Carrier shall hol deliver this shipment without advance payment of all shipping and related charges.

Signature of Shipper: \qquad
Branch/Plant :
67501
DAVENPORT PLANT 301 EAST FRONT ST BUFFALO IA 52728 (563) 323-2751

Shipped To :
280485
BARD MATERIALS WEST REGION HWY. 136 S
CASCADE IA 52033
(563) 8523313

BOL No. Load No.	3197647
Sales Order No. Shiprnent No.	5130597
Shipment Date	20479931
Customer Requested Dolivery Date	$03 / 23 / 10$
Customer Requested Delivery Time (ET)	$00: 00: 00$

STRAIGHT BILL OF LADING - SHORT FORM - ORIGINAL - NOT NEGOTIABLE

RECEIVED, stbject to the classification and tariffs in effect on the date of issue of this Original Bill of Ladihg, he property described below, in apparent good order, except as noted (contents and condion of contents of packages unknown), marked, consigned and desthed as indicated bebw, which said carrier (the word carrier being understood throughout this contrad as meaning and person or corporation in possession of the property under the contrad) agrees to cany to hs usual piace of delivery at said destination, if on its route, otherwise to defiver to anolher camier on the route to said desthation. I is mutualy agreed, as to each carrier of all or any of said property over all or any portion of said route to destination, and as io each party at any time interested in all or any of said property, hat every service is be performed hereunder shal be subject to all the terms and condstion of the Uniform Domestic Straight Bill of Lading set forth (1) in Unform Freight Classifications in effiect on the date hernof, if the is a rai or rail water shipment, or (2) in the applicable motor carrier classfication or tarift y this is a mobor carrier shipment.
Shipper hereby certifies that he is famiar with all the terms and conditions of the said bill of lading set forth in the classification or tariff which govems the transportation of this shipment, and the said terms and conditions are hereby sgreed to by the shipper and accepted for himself and his assigns.

CAUTION
Cement powder or freshly mixed concrete, grout or mortar may cause skin njury. Avoid contact with skin and wash exposed skin areas prompty with water. Ifany cemert powder or mixtures get into ejes, finse immediately and repeatody with waker and get prompt medical atertion.

KEEP OUT OF REACH OF CHILOREN

Policies and Statements \mid Applets and Pluq-ins
lowa Department of Transportation - 800 Lincoln Way-Ames, IA 50010

E9980

Purchase Order \#
Delivery Date
Admixture Solutions

x Convert - 若Select
lowa Department of TRANSPORTATION
DOT Home | DOT Phone Book| Contact Us Cooske" Custom Searen \mid a
an
SIGNIN
Search information:
MAPLE may be searched by navigating to the "Material names", "IMs", or "Producers" tab and selecting an item from a dropdown
list or by navigating to the "Brands" tab, entering text into the search field, and then clicking the show results button.
View Report
IM $\begin{gathered}\text { Location } \\ \text { (City, } \\ \text { State) }\end{gathered}$
\longrightarrow

Dallas, TX
Boston, MA
Rockwall,
TX
Pioneer,
OH

OH

百

－｜国｜x

Temeratari afz Cement \qquad Seed \qquad
Prect \qquad影斯

				E-Units
Check Mix(x)		Check One(x)		SEND (Daily) (Weekly) (Weekly) (Weekly)
Central		Paving		
Ready	x	Structure	X	
		Noncritical		
		Patching		

Water Reducer:	BASF Polyheed 997	$3.50 z / 100$	$\wedge 56578230$

	Type	Sp. Gr.	Source
Cement:	1	3.14	Continental
Fly Ash:	c	2.65	Louisa

Fly Ash: | Source | T-203 A\# | Grad. No. | |
| :--- | :--- | :---: | :---: |
| Coarse: | cascade east | A31060 | 3 |
| Intermediate: | | | |
| Fine: | Loes | A53532 | 1 |
| | | | |

Material Air \& Slump Test County Dubuque
Intended Use

Laboratory No. Structure \quad| Project No. |
| :--- |

Date Reported 7-29-10 Contract No. 27627 31-C031-061

Producer
Contractor Tschiggfrie Excav. Co.
Source
Unit of Material Subcontractor
Sampled By Steve Deck \quad Senders No. CR10AS-185 \quad Date \quad 7-29-10
$\frac{\text { Air }}{7.4} \% \quad \frac{\text { Slump }}{2-3 / 4^{\prime \prime}}$

Note: side by side air test was performed at the job site. Certified tech, Dennis Kearney, EC345 from Dubuque Co. Engr. office had air of 7.4% and slump of $2-3 / 4$ ". Steve Deck, EC679 DOT Materials office had air of 7.6%. Tests are within DOT specs. IM216.

Ames
R.Boulet, Dist. 6 Matls.
S. Deck
D. Kearney

Signed R. Boulet, P.E.
District 6 Materials Engineer

Senders No. CR10AS-179

Project No.:
Contract ID.: County: Cont. / Producer:

Design No.:
Coarse Agg. T-203A No.: $\overline{\mathrm{A} 31060}$
Fine Agg. T-203A No.: Proper Equipment: Applicable Specification: D.O.T. Tested By:

Prod. / C.P.I. Tested By:

ESFM-C031(61)-5S-31

DUBUQUE
TSCHIGGFRIE EXCAV. CO.

A31060
A53532
: \qquad
STEVE DECK DENNISKEARNEY

Intended Use: Independent Assurance (Paving, Structure, Patching, Incidental)

Good
Care of Equipment:
X Sampling Procedure: Splitting Procedure:
Sieving to completion: Computations: \bar{X}

Reporting: \bar{X}

Fair

Poor -
\qquad
\qquad
\square

- \square

Cert. No.: EC345

$$
\begin{array}{ll}
\text { Date: } & \frac{7-29-10}{\text { Date: }} 7 \mathbf{7 - 2 9 - 1 0} \\
\hline
\end{array}
$$

								Siev	izes					
			1.5"	1.0"	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	3/8"	4	8	16	30	50	100	200
Grad No.	Sample ID	Specs												
	HS-46-10	D.O.T.	100	100	89	57	31	2.6	0.1					0.9
	DK-46-10	Prod. / C.P.I.	100	100	91	55	32	3.8	1.1					0.9

Grad No.	Sample ID					Specs								
	HS-47-10	D.O.T.					100	97	90	78	45	11	1.1	0.5
	DK-47-10	Prod. / C.P.I.					100	98	91	77	48	12	1	0.5

Sieves	D.O.T. \% Retained	Prod. / C.P.I. \% Retained	Diff.	Tol. $\%$	Comply $(\mathrm{Y} / \mathrm{N})$
$11 / 2-1$	0.0	0.0	0.0	2	Y
$1-3 / 4$	11.0	9.0	2.0	5	Y
$3 / 4-1 / 2$	32.0	36.0	4.0	7	Y
$1 / 2-3 / 8$	26.0	23.0	3.0	6	Y
$3 / 8-4$	28.4	28.2	0.2	6	Y
$4-8$	2.5	2.7	0.2	1	Y
$8-200$	-0.8	0.2	1.0	1	Y
200	0.9	0.9	0.0	1	Y

$3 / 8-4$	3.0	2.0	1.0	2	Y
$4-8$	7.0	7.0	0.0	2	Y
$8-16$	12.0	14.0	2.0	3	Y
$16-30$	33,0	29.0	4.0	4	Y
$30-50$	34.0	36.0	2.0	4	Y
$50-100$	9.9	11.0	1.1	2	Y
$100-200$	0.6	0.5	0.1	1	Y
200	0.5	0.5	0.0	1	Y

Remarks:

Coarse Aggregate:

0.0	to 3.0	2
3.1	to 10.0	3
10.1	to 20.0	5
20.1	to 30.0	6
30.1	to 40.0	7
40.1	to 50.0	9

Fine Aggregate:

| 0.0 | to 3.0 | 1 |
| ---: | :--- | :--- | :--- |
| 3.1 | to 10.0 | 2 |
| 10.1 | to 20.0 | 3 |
| 20.1 | to 30.0 | 4 |
| 30.1 | to 40.0 | 4 |

Roger H. Boulet
Dist. 6 Materials Engineer
Distribution: \qquad Central Materials \qquad TC Materials \qquad Cont./Prod. \qquad Proj. Engineer Techniciar S. Deck Dubuque Co.

```
AAC0-0337
                                    VERIFICATION
IOWA DEPARTMENT OF TRANSPORTATION
                                    OFFICE OF MATERIALS
TEST REPORT - CRUSHED STONE
    LAB LOCATION - AMES
                                    LAB NO.....:AAC10-0337
MATERIAL. . . . . . . : CONC STONE
INTENDED USE.... :DECK/STRUCT
PRODUCER........湆的D CONCRETE CO
COUNTY......... :DUBUQUE QUARRY NO.:A31060
SPEC NO........:4115.00 CONTRACTOR:TSCHIGGFRIE
SOURCE. ......... CASCADE EAST SE-22-087N-01W, DUBUQUE
UNIT OF MATERIAL:BARD R/M
SAMPLED BY.....:DECK SENDER NO.:CR10AS178
DATE SAMPLED: 07/29/10 DATE RECEIVED: 08/10/10 DATE REPORTED: 08/18/10
PROJ: ESFM-C031(61)--5S-31
LAB NUMBER AACO-0337
TYPE OF AGGREGATE
STONE
LA ABRASION % LOSS, GRADING B
32
SPECIFIC GRAVITY
2.616
ABSORPTION 2.04
AL2O3
0.307
```

COPIES TO:	Stever 1	
CENTRAL LAB	DUBUQUE	

DISPOSITION: COMPLIES WITH INTENDED USE
SIGNED: KEVIN B. JONES

~~~~~


COPIES TO:
CENTRAL LAB

Skeve-i
DUBUQUE CO.- DIST6
```
ACIO-0218
CI IOWA DEPARTMENT OF TRANSPORTATION
    IOWA DEPARTMENT OFFICE OF MATERIALS
TEST REPORT - ADMIXTURES
    LAB LOCATION - AMES
                                    LAB NO.... :ACI10-0218
MATERIAL........:WATER REDUCER
INTENDED USE. ...:STRUCTURE
PRODUCER........:BASF CONSTRUCTION CHEMICALS
COUNTY............ : DUBUQUE
CONTRACTOR:TSCHIGGFRIE EXAV. CO.
                                LOT NO. . . : :56578230
QUANTITY........:SAMPLED BARD R/M CASCADE IA
BRAND............ : POLYHEED }99
UNIT OF MATERIAL:ACCOUNTING ID: 27627 CONTRACT ID: 31-C031-061
LOCATION OF PRODUCING PLANT: CLEVELAND, OH
SAMPLED BY......:STEVE DECK SENDER NO.:CR10AS-184
DATE SAMPLED: 07/29/10 DATE RECEIVED: 08/03/10 DATE REPORTED: 08/10/10
PROJECT: ESFM-C031(61)--5S-31
```


CONSTRUCTION MATERLALS, INC
345 49TH AVENUE DRIVE S.W. CEDAR RAPIDS, IOWA 52404 PHONE: (319) 366-6446 FAX: (319) 366-1712

5210 N.E. 17TE STREET DES MOINES, IOWA 50313 PHONE: (515) 263-9006 EAX: (515) 263-8326

Order Number: 0061396
Order Date: 9/24/2008
Ship Date: 8/11/2009
Customer P.O.: 955 (82) Ship VIA: HUMMER Prolect: Jackson Co. (82)

\section*{SOLD TO:}

Tschiggrie Excavating 425 Julian Dubuque Dr PO Box 3280
Dubuque, IA 52001


SHIP TO:
fotamint
On Hwy 52 near south end of town
Deliver after 10:00 AM
Bellevue, IA 52031

Confirm To:
Randy Steffan 563-590-1502


345 49TH AVENUE DRIVE S.W CEDAR RAPIDS, IOWA 52404 PHONE: (319) 366-6446 FAX: (319) 866-1712

5210 N.E. I7TH STREET DES MOINES, IOWA 50313 PHONE: (515) 263-9006 FAX: (515) 263-8326

Order Number: 0061396
Order Date: 9/24/2008
Ship Date: 8/11/2009
Customer P.O.: 955 (82)
Ship VIA: HUMMER
Project: Jackson Co. (82)

SOLD TO:
Tschiggfrie Excavating 425 Julian Dubuque Dr
P O Box 3280
Dubuque, IA 52001

SHIP TO:
Cedar Rapids Will Call
On Hwy 52 near south end of town
Deliver after 10:00 AM Bellevue, IA 52031

Confirm To:
Randy Steffan 563-590-1502
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{ll} 
F.O.B. & Terms \\
Shipping Point & Net 30 Days
\end{tabular} & Terms Net 30 Days & \multicolumn{2}{|r|}{CMI Job \#} & & Salesperson BW & \multicolumn{3}{|c|}{Customer Number 02-TSC01} \\
\hline Item Number Description & Whse & Unit & Ordered & Shipped & Back Order & Shipped & Price & Amount \\
\hline \begin{tabular}{l}
3KEYXFPL3008-9 \\
Keyway Formed wf legs \(30^{\prime \prime}\) P \(8^{\prime \prime}-9^{\prime \prime P}\) PCC
\end{tabular} & 030 & LFT & 1,790.00 & 0.00 & 1,790.00 & & 0.4400 & 787.60 \\
\hline \begin{tabular}{l}
3CWCWRM1645-RF \\
1645 White Cure -Refill IOWA Dot Wax Water Cure WR Meadows (1-275 gal. totes) Lot \# 9 HH 112
\end{tabular} & 030 & GAL & 275.00 & 0.00 & 275.00 & & 4.3000 & 1,182.50 \\
\hline \begin{tabular}{l}
3JSWRM3405-IAMO \\
3405 Mod. Iowa DOT \\
WR Meadows \\
(12-55\# ctns) \\
LOT \# \(9 H J 013\)
\end{tabular} & 030 & LBS & 660.00 & 0.00 & 660.00 & & 0.7100 & 468.60 \\
\hline
\end{tabular}




345 49TH AVENUE DRIVE S.W. CEDAR RAPIDS, IOWA 52404 PHONE: (319) 366-6446 FAX: (319) 366-1712

5210 N.E. 17 TH STREET DES MOINES, IOWA 50313 PHONE: (515) 263-9006 FAX: (515) 263-8326

Order Number: 0081056
Order Date: 3/11/2010
Ship Date:-3/11/2010 3-1
Customer P.O.: DAVE K.
Ship VIA: HUMMER
Proiect: DUBUQUE CO. (61)
Master Order: 0080675

\section*{SHIP TO:}

Jobsite at 4 locations on
Farley Road (Co. Rd Y13)
North of
Cascade, IA 52033

Confirm To:
DAVE K. (563) 590-0278
\begin{tabular}{lllll}
\hline F.O.B. & Terms & CMI Job \# & & Salesperson \\
JOBSITE-6 LOADS & Net 30 Days & \(10-\mathrm{C03}\) & CS & Customer Number \\
\hline Item Number & Description & Unit & Ordered & Shipped \\
\hline
\end{tabular}



CONSTRUCTION MATERIALS, INC.
345 49TH AVENUE DRIVE S.W. 5210 N.E. 17 TH STREET CEDAR RAPIDS, IOWA 52404 DE MOISES, IOWA 50313 PHONE: (319) 366-6446 PHONE: (515) 263-9006 FAX: (319) 366-1712

\section*{SALES ORDER}

\author{
Order Number: 0081056 \\ Order Date: 3/11/2010 \\ Ship Date: 3/11/2010 \\ Customer P.O.: DAVE K. \\ Ship VIA: HUMMER \\ Project: DUBUQUE CO. (61) \\ Master Order: 0080675
}

SOLD TO:
Tschiggfrie Excavating 425 Julian Dubuque Dr PO Box 3280
Dubuque, IA 52001

\section*{SHIP TO:}

Jobsite at 4 locations on
Farley Road (Co. Rd Y13)
North of
Cascade, IA 52033

Confirm To:
DAVE K. (563) 590-0278


FOR CHEMICAL EMERGENCY
SPILL, LEAK, FIRE, EXPOSURE OR ACCIDENT
CALL CHEMTREC 800-424-9300


ALL RETURNS ARE SUBJECT TO A 25\% RESTOCK CHARGE

\author{
Black Rebar Certification
}

FAX (319) 366-1712
County: Dubuque County
Project: ESFM-C031(61)--5S-31
Design No. \(\qquad\)
Contractor: Tschiggfrie Construction
The Material listed itemized in this shipment is certified to meet the requirements of ASTM and the applicable specifications of the lowa Department of Transportation. Attached are the copies of mill tests reports and bar lists that are applicable to this shipment.
\begin{tabular}{|c|c|c|}
\hline Size & Weight & Heat Numbers \\
\hline 11 & & \\
\hline 10 & & \\
\hline 9 & & \\
\hline 8 & & \\
\hline 7 & 580 & KN0910547101/ \\
\hline 6 & 17,572 & KN1010007601, KN0910580901 \\
\hline 5 & 20,529 & KN0910623701, \({ }^{\text {K }}\) N0910623801/ \\
\hline 4 & 14,910 & KN0910614301, KN10100ヶ5001 \\
\hline 3 & & 84 \\
\hline Spirals \& Spacers & & \\
\hline
\end{tabular}

Bar List Total 53,591

Signed:


Distribution
\begin{tabular}{|ll|c|}
\hline Transportation Center \(\quad\) EC & 1 \\
\hline Field w/ Truckload & 1 \\
\hline Contractor - Main Office & \(6725-\) OXFORD-STREET \\
\hline
\end{tabular}


Rebar, Grade 60, Black


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{3}{*}{Construction Materials, Inc. 345 49th Ave. Dr SW Cedar Rapids, lowa 52404 800-747-6401 319-366-1712(fax) constructionmaterialsinc.com}} & & \multicolumn{2}{|l|}{\[
10-\mathrm{CO}
\]} & & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { RELESSE MUMEER } \\
& 1
\end{aligned}
\]} & \multicolumn{3}{|r|}{REQ DELVEEYDATE} & \multicolumn{2}{|l|}{3 of 4} \\
\hline & & & & & & & & \multicolumn{9}{|l|}{ESFM-C031(61)--5S-31} & \multicolumn{2}{|l|}{} \\
\hline & & & & & & & & \multicolumn{9}{|l|}{Tschiggfrie Excavating} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{By} \\
& \mathrm{EE}
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{Multiple} & \multicolumn{3}{|r|}{DUBUQUE COUNTY} & \multicolumn{3}{|r|}{DRRWIMCID
IDOT} & & \multicolumn{4}{|l|}{\#1704 FHWA 146070} & & & & \\
\hline Itm & Qty & Size & Length & Mark & Shape & Lbs & A & B & C & D & E & F/R & G & H & J & K & 0 & BC \\
\hline \multicolumn{10}{|c|}{Rebar, Grade 60, Black -- Continued} & & & & & & & & & \\
\hline \multicolumn{19}{|l|}{" THE FOLLOWING ITEM IS A GROUPED VARIABLE - 60 VARY 1 EACH **} \\
\hline 1 & 60 & 4 & 12-11 & 4 C 1 & & 316 & & & & & & & & & & & & 0 \\
\hline & & & 2-10 & 4 C 1 & & & & & & & & & & & & & & 0 \\
\hline \multicolumn{19}{|l|}{" THE FOLLOWING ITEM IS A GROUPED VARIABLL - 36 VARY 1 EACH **} \\
\hline 2 & 36 & 4 & 12-10 & 4C2 & & 188 & & & & & & & & & & & & 0 \\
\hline & & & 2-10 & 4 C 2 & & & & & & & & & & & & & & 0 \\
\hline \({ }^{3}\) & 4 & 4 & 11-09 & 4 C 3 & & 31 & & & & & & & & & & & & 0 \\
\hline 4 & 3 & 4 & 10-07 & 406 & & 21 & & & & & & & & & & & & 0 \\
\hline \multicolumn{19}{|l|}{" THE FOLLOWING ITEMIS A GROUPED VARIABLE - 55 VARY 1 EACH *} \\
\hline 5 & 55 & 4 & 10-05 & \(4 \mathrm{C5}\) & & 226 & & & & & & & & & & & & 0 \\
\hline \multicolumn{3}{|l|}{} & 1-10 & \(4 \mathrm{C5}\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & & & & & & & & & & & & 0 \\
\hline 6 & 2 & 4 & 1.09 & 4 CA & & & & & & & & & & & & & & 0 \\
\hline & 258. & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Rebar, Grade 60, Galvanized


19'-6" END SECTION
Rebar, Grade 60, Black



Total Weight: 19,360 Lbs

Longest Length: 60-00

WEIGHTSUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{TOTAL} & \multicolumn{3}{|c|}{STRAIGHT} & \multicolumn{3}{|l|}{LIGHT BENDING} & \multicolumn{3}{|l|}{HEAVY BENDING} \\
\hline SIZE & ITEMS & PIECES & LBS & ITEMS & PIECES & LBS & ITEMS & Pleces & LBS & ITEMS & PIECES & LBS \\
\hline & \multicolumn{12}{|c|}{Rebar, Grade 60, Black} \\
\hline 4 & 253 & 475 & 4767 & 237 & 408 & 4178 & 1 & 49 & 218 & 15 & 18 & 371 \\
\hline 5 & 172 & 570 & 6821 & 71 & 284 & 3395 & 1 & 55 & 426 & 100 & 231 & 3000 \\
\hline 6 & 104 & 267 & 7476 & 91 & 177 & 5803 & 0 & 0 & 0 & 13 & 90 & 1673 \\
\hline \multirow[t]{2}{*}{7} & 1 & 4 & 290 & 1 & 4 & 290 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 530 & 1316 & 19354 & 400 & 873 & 13666 & 2 & 104 & 644 & 128 & 339 & 5044 \\
\hline \multicolumn{13}{|c|}{Rebar, Grade 60, Galvanized} \\
\hline \multirow[t]{2}{*}{5} & 1 & & 6 & 0 & 0 & & 1 & 2 & 6 & 0 & 0 & 0 \\
\hline & 1 & 2 & 6 & 0 & 0 & 0 & 1 & 2 & 6 & 0 & 0 & 0 \\
\hline
\end{tabular}

\#1704 FHWA 146070
TAG:ORANGE


Total Weight: \(14,871 \mathrm{Lbs}\)

Longest Length: 37-08

WEIGHTSUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{TOTAL} & \multicolumn{3}{|c|}{STRAIGHT} & \multicolumn{3}{|l|}{LIGHT BENDING} & \multicolumn{3}{|l|}{HEAVY BENDING} \\
\hline SIZE, & ITEMS & PIECES & L.ES & ITEMS & P1ECES & LBS & ITEMS & PIECES & LBS & ITEMS & PIECES & LBS \\
\hline & \multicolumn{9}{|c|}{Rebar, Grade 60, Black} & & & \\
\hline 4 & 8 & 315 & 5376 & 8 & 315 & 5376 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 10 & 552 & 6875 & 8 & 396 & 5404 & 0 & 0 & 0 & 2 & 156 & 1471 \\
\hline \multirow[t]{2}{*}{6} & 4 & 240 & 2620 & 2 & 96 & 763 & 0 & 0 & 0 & 2 & 144 & 1857 \\
\hline & 22 & 1107 & 14871 & 18 & 807 & 11543 & 0 & 0 & 0 & 4 & 300 & 3328 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & Con & tion Ma & Is, Inc. & & & & & & \[
3
\] & & & & Liv & & & \\
\hline & & & \[
345
\]
Ced: & Ave. D pids, & \[
52404
\] & & & & & & & & & & & & & \\
\hline & & & \[
\begin{aligned}
& 800 \\
& \text { con }
\end{aligned}
\] & onma & \[
\begin{aligned}
& 366-171 \\
& \hline \text { sinc.co }
\end{aligned}
\] & & & & & & & & & & & & \[
\mathrm{EE}
\] & \\
\hline \[
\begin{aligned}
& \hline \text { MATEIE } \\
& \text { Mult }
\end{aligned}
\] & LTME & & & DUFE & QUE C & NTY & & OT & & & cki & \[
\mathrm{FH}
\] & 14 & & & & & \\
\hline Itm & Qty & Size & Length & Mark & Shape & Lbs & A & B & C & D & E & F/R & G & H & J & K & 0 & BC \\
\hline
\end{tabular} \#1704 FHWA 146070
TAG: PURPLE
(1) HEADWALL

Rebar, Grade 60, Black





Rebar, Grade 60, Galvanized
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 2 & 5 & \(2-11\) & \(5 F A\) & 511 & 6 & & \(2-103\) & & & & & & 1.04 & & & 0.05 \\
\hline & 2 & & 6 & \\
\hline
\end{tabular}

19'-6" END SECTION
Rebar, Grade 60, Black



Total Weight: \(19,360 \mathrm{Lbs}\)

Longest Length: 60-00

WEIGHTSUMMARY





\footnotetext{
I hergay certify that the haove figures are correct as comtathed ib the prcords of the corporation.
}

\begin{tabular}{cl} 
& CONSTRUCTION MATERIALS INC \\
SOLD & 345 49TH AVE DR SW \\
TO: & CEDAR RAPIDS, IA 52404-4819 \\
& \\
& \\
SHIP & CONSTRUCTION MATERIALS \\
TO: & 345 49TH AVE SW \\
& CEDAR RAPIDS, IA 52404-4819
\end{tabular}

NuICar
CERTIFIED MILL TEST REPORT
\[
\begin{aligned}
& \text { Ship from: } \\
& \text { Nucor Steel Kankakee, Inc. } \\
& \text { One Nucor Way } \\
& \text { Bourbonnais, IL. } 60914 \\
& 815-937-3131
\end{aligned}
\]

GAR MILL GROUP
NUCOR STEEL KANKAKEE, INC.

345 49TH AVE DR SW

紫

Material Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative.


I herbby certify tuat tur above figures are corrbct as contaimed th the rbcords of the corporation.

Date: 11-Dec-2009
B.L. Number: 401160

Load Number: 195137
nuras
BAR MILL GRDUP
NUCOR STEEL KANIKAKEE, INC.
Nucor Steel Kankakee, Inc.
One Nucor Way
Bourbonnais, IL 60914
Bourbonnais, IL
\(815-937-3131\)

\section*{SOLD CONSTRUCTION MATERIALS INC
345 49TH AVE DR SW 345 49TH AVE DR SW 52 \\ CEDAR RAPIDS, IA 52404-4819}

CONSTRUCTION MATERIALS
CEDAR RAPIDS, IA 52404-4819
SHIP
TO:
Material Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative.


\footnotetext{
I hergay certipy tiat the above figures arb correct as contained in tur records of the corporation.
}

Page: 1

```
AS 0-0045
S
IOWA DEPARTMENT OF TRANSPORTATION
OFFICE OF MATERIALS
TEST REPORT - REINFORCING STEEL
    LAB LOCATION - AMES
MATERIAL . . . . . . . : REINFORCING STEEL
INTENDED USE. . . . :STRUCTURE
PRODUCER. . . . . . . : : NUCOR STEEL
CONTRACTOR:TSCHIGGFRIE
QUANTITY. . . . . . . : }211657\mathrm{ LBS
SOURCE.............:KANKAKEE, IL
SAMPLED BY. . . . :ZIMMERMAN SENDER NO. :CR1OAS-42
DATE SAMPLED: 05/12/10 DATE RECEIVED: 05/18/10 DATE REPORTED: 05/25/10
PROJ: ESFM-C031(61)--5S-31
```

LAB NO.
AS 0-0045
SENDER'S NO. CR10AS-42 NOM. SIZE UNIT WEIGHT

LB. PER FOOT YIELD POINT

LBS. PER SQ. IN. TENSILE STR.

LBS. PER SQ. IN.
ELONGATION PERCENT
IN 8 INCHES
REQUIRED
BEND TEST DEFORMATIONS
```
LAB NO. . . : AS 10-0045
MATERIAL . . . . . . . . : REINFORCING STEEL
PRODUCER. . . . . . . . : NUCOR STEEL
CONTRACTOR:TSCHIGGFRIE
QUANTITY. . . . . . . . : 211657 LBS
SAMPLED BY. . . . . :ZIMMERMAN SENDER NO. :CR10AS-42
PROJ : ESFM-C031 (61)--5S-31
DATE RECEIVED: 05/18/10 DATE REPORTED: 05/25/10
- - . . . . . . . .
```
-

COPIES TO: CENTRAL LAB

Hayder-
DUBUQUE
dubuque



DIST6
I.M. 401

Hydraulic Cements

\section*{HYDRAULIC CEMENTS}

\section*{GENERAL}

Portland cement shall meet the requirements of ASTM C150 for the type specified. When blended cement is to be furnished, it shall meet the requirements of ASTM C595. Cement Type I, II, III, IP, IS and IL shall also meet the additional requirements outlined in Section 4101 of the Standard Specifications. Approval of any type of Portland and blended cements will be based on certification by an approved source or upon source sampling and testing before being incorporated into the work. Approved cement sources and distribution terminals are listed in the Materials Approved Products Listing Enterprise (MAPLE) as Appendixes A and B.

The available cement types are:

\section*{ASTM C150}

Type I For general use.
Type II For moderate sulfate resistance. \(\mathrm{C}_{3} \mathrm{~A}\) less than \(8 \%\).
Type III High early strength. Generally, a finer ground Type I cement.
White Cement White cement sources shall meet the requirements of ASTM C150, except the maximum \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) shall not exceed \(0.5 \%\). Approved sources of white cement are listed in the Appendix \(B\).

\section*{ASTM C595}

Type IS Type I Slag is a Portland cement blended, or clinker interground, up to \(35 \%\) GGBSF.

Type IP Type I Pozzolan is a Portland cement blended or clinker interground, up to \(25 \%\) pozzolan.

Type IL Type I Limestone is a Portland cement blended or clinker interground, between \(5 \%\) and \(15 \%\) limestone.

\section*{SOURCE APPROVAL}

For consideration for approval, the manufacturer shall provide the following to the Materials Office:
1. A quality control program that meets the requirements of Section A.
2. A copy of the latest CCRL inspection report on quality control laboratory, including documentation of resolution of any discrepancies noted.
3. A 3-month strength uniformity report prepared in accordance with the requirements of ASTM C917, "Standard Test Method for Evaluation of Cement Strength Uniformity from a Single Source".
4. A letter indicating the type of each processing addition, and the percent range that will be used in Type I cement.

The manufacturer shall also prepare a 24 -hour composite sample of cement from current production according to ASTM C183. This sample will be tested by the Central Materials Laboratory for acceptance.
lowa may approve a source based on another state source approval, provided that state will agree to the terms in Appendix C and the source meets Section 4101 of the lowa DOT Standard Specifications.

Mixing of cement from different sources, different plants, or of different types in one storage bin or silo will not be allowed.

When less than \(5 \%\) of limestone is used, the manufacturer shall inform the Office of Materials in writing on the amount of the addition. The manufacturer shall also supply comparative test data on chemical and physical properties of the cement with and without limestone. The amount of limestone used shall be included in the manufacturer's Mill Test Reports. Approval of Type IL cement which contains limestone in a range of \(5 \%\) to \(15 \%\), is described in Section C of this IM.
A. Quality Control Program

The control of the production from each grinding mill type shall be considered separately. The following minimum testing frequencies are presented as a general guideline:
1. One sample representing 24 hours of production to be tested for air content, false set, and soundness. Determinations of free lime may be used to alter the frequency of testing soundness.
2. One sample representing 4 hours production to be tested for time of set and fineness.
3. One sample representing 48 hours production to be tested for chemical analysis.
4. One sample representing 4 day's production to be tested for 3- and 7-day compressive strength.

The sampling, tests and testing frequencies required may vary from the above guidelines depending of the particular production problems of the plant. In all cases, the quality control procedure used shall be submitted in writing to the District Materials Engineer for approval.

The plant sample test records shall be available for study by Highway Division personnel for at least seven years after the cement represented has been produced.
B. Quality Control Laboratory

The Portland cement plant is required to have a control laboratory compliant with ASTM C1222, Standard Practice for Evaluation of laboratories Testing Hydraulic Cement. The control laboratory shall be AASHTO accredited. This laboratory will perform testing on the applicable
types of cement meeting ASTM C150 and C595. Any major difference on test results between the control laboratory and the Highway Division Ames Laboratory shall be resolved quickly. Continued unresolved differences in test results will be considered a basis for discontinuing control laboratory approval.
C. Approval of Type IL Cement

To apply for approval of a Type IL cement, manufacturer shall submit test results of two concrete mixtures, one with the Type IL cement and other with the control Type I/II cement of the same source, to the Office of Materials. These two concrete mixtures shall be cast per the Iowa DOT Concrete Mix Designation C-3WR-C20. The coarse aggregate used shall be an lowa DOT approved limestone or dolomite. Fly ash, sand, air entraining agent and chemical admixtures used shall also be from lowa DOT approval lists. The air content shall be in the range of \(5.5 \%\) and \(7.0 \%\).

The tests and approval requirements are listed below:
- ASTM C39, Compressive Strength at 7, 28, and 56 Days: \(90 \%\) or better of control.
- ASTM C78, Flexural Strength or ASTM C496, Splitting Tensile Strength at 28 and 56 Days: \(95 \%\) or better of control or a 28 -day \(3^{\text {rd }}\) point MR greater than 640 psi.
- ASTM C157, Concrete Shrinkage up to 56 Days: \(95 \%\) or better of control or 56-day shrinkage less than 0.040\%.
- ASTM C666, Freeze-Thaw Resistance up to 300 Cycles: \(95 \%\) or better of control or a durability factor greater than \(90 \%\).
- ASTM C457, Air Void Analysis.
- ASTM C1202, Rapid Chloride Permeability.
- ASTM C1012, Sulfate Resistance up to 6 Months.

\section*{SOURCE APPROVED BY OTHER STATES}
lowa DOT will accept cements and cement blends approved or certified by other state transportation agencies, providing that state agrees to the following terms and that source meets Article 4101 of Standards Specifications.
1. The host state agency will require the cement plant within its boundaries to have a laboratory compliant with ASTM C1222, Standard Practice for Evaluation of Laboratories Testing Hydraulic Cement. This laboratory shall be AASHTO accredited and will perform testing on the applicable types of cement produced (ASTM C 150/AASHTO M 85, C595/AASHTO M 240, C 1157) and shipped for state agencies consumption. Agency laboratories used for verification testing must meet the same criteria.
2. The host state agency will require the cement plant within its boundaries to have a printed, agency acceptable quality control/quality assurance plan for the production of cements used by state agencies. The plan must include commitments to comply with ASTM C1222 and ASTM C183, Standard Practice for Sampling and the Amount of Testing of Hydraulic Cement. The host state agency will verify compliance with the quality control plan.
3. The host state agency will require the cement producer to maintain and provide, for each lot (silo) of cement shipped, a compilation of Mill Test Reports in an electronic form (Excel spread
sheet). The applicable data will be provided to the host state agency at least semiannually.
4. The host state agency will require the cement producer to submit split samples of a regular Portland cement (ASTM C150/AASHTO M85) and a blended cement (ASTM C595/AASHTO M240) or performance specification cement (ASTM C1157) if produced, semiannually for verification testing.
5. The host state agency will require the cement producer to submit reports for ASTM C917, Standard Test Method for Evaluation of Cement Strength Uniformity From a Single Source, for both a regular Portland cement and a blended cement, if produced, at least semiannually.
6. The host state agency will require the cement producer to maintain production and quality control/quality assurance records for at least seven years and make those records available if requested.
7. The host state agency will review submittals from the cement producer along with agency test results. If deficiencies are discovered, the state agency will monitor corrective actions taken by the producer until the deficiencies are corrected. The reciprocal agreement state agency will be notified of the deficiencies and of each occurrence.
8. Any test results or submittals collected by the host state agency may be made available to the reciprocal agreement state agency upon request.
9. All cement plant information and data is confidential within the limits of a public agency and is for state agencies information and inspection only.
10. Quality assurance test results of field samples, performed by a reciprocal state, shall be reported to the host state agency when non-compliance occurs. The reciprocal state agency will deal directly with the cement producer. The host state agency will take action as described in Item 7. The host state agency shall notify all reciprocal agreement state agencies when noncompliance occurs.
11. Cement tests or requirements beyond the standards stated above may be provided to reciprocal state agencies by agreement between the host state and reciprocal state agencies.

\section*{CONTINUED SOURCE APPROVAL}
A. DOT Sampling and Testing

After initial approval, random samples will be taken and tested at a minimum rate of one sample semiannually. The samples may be taken at the source or at the distribution terminal if the source is outside the district's normal area of travel.

A split-sample will be obtained from the plant of a Regular Supplier twice a year, preferably in January and July. The sample will be split and tested for complete chemical and physical properties by supplier's control laboratory and the Highway Division Ames Laboratory, respectively. The date of the split sampling and load out silo number will be identified on the sample identification report for later comparison.

Verification samples will be secured at the project site just before incorporation into the work. Test results, which do not comply with the specifications, may be considered sufficient cause to rescind approval to furnish cement. Construction that contains cement represented by verification samples showing deficient test results will be subject to the requirements of Article 1105.04 of the Standard Specifications.
B. Mill Test Reports

Mill Test Reports covering cement to be certified shall be submitted to the Cement and Concrete Engineer at the Central Laboratory at Ames, and if requested, to the District Materials Engineer who monitors the plant. An electronic form (Excel spreadsheet) is acceptable.

The plant of a regular supplier is required to submit reports for ASTM C917, Standard Test method for Evaluation of Cement Strength Uniformity at least annually.

\section*{PROJECT DOCUMENTATION}

All approved cements shipped for intended use in lowa shall be clearly identified. The producer of approved cement shall furnish for the project records, two invoices or bill of lading copies, which bear the following certification statement and the signature of an authorized representative of the producer:

\section*{CERTIFICATION STATEMENT}

The material herein described has been sampled and tested as prescribed by the Highway Division of the lowa Department of Transportation and complies with the applicable specification requirements for type cement.

Bin No.__ Signed
Date
The bills of lading or invoices shall include project number, if available, source name, source location, source code, type, and quantity in the shipments. For blended cements (Types IP and IS), the above type designation shall include the suffix \((X)\), where \((X)\) equals the targeted percentage of slag or pozzolan in the product.

In the case of truck shipments, these copies of the bill of lading or invoice shall accompany each load, and shall be retained at the project or ready mixed concrete plant for the project engineer records. In the case of rail shipments, these copies shall be mailed to the project or ready mix plant.
I.M. 403

Chemical Admixtures
For Concrete

Iowa Department of Transportation
Office of Materials

\section*{CHEMICAL ADMIXTURES FOR CONCRETE}

\section*{GENERAL}

Air entraining admixtures shall meet the requirements of AASHTO M154. Water reducing and retarding, water-reducing, high range water reducing, and non-chloride accelerating admixtures shall meet the requirements of AASHTO M194. All chemical admixtures used for Portland Cement Concrete shall meet the requirements outlined in Section 4103 and other applicable lowa Department of Transportation Standard Specifications. Approved brands of chemical admixtures for concrete are listed in the Materials Approved Products Listing Enterprise (MAPLE) as Appendixes A, B, C, D, E, F and G for different types of applications.

For all types of admixtures, the source, brand name, and lot/batch number must be identifiable by markings on the container and by description on the invoice. The manufacturer and supplier shall maintain a record of shipment, which identifies the brand, lot/batch number and certified test data for each shipment. This data shall be made available to the contracting authority when requested.

Material that (i) is suspected of being frozen, or (ii) exceeds its shelf life, or (iii) has been stored at plant site for more than 6 months shall be sampled and tested prior to use.

\section*{MANUFACTURER, BRAND NAME APPROVAL, USAGE GUIDELINES}

To obtain approval for any admixture type, the manufacturer shall submit the following items to the Office of Materials in Ames:
1. Product identification including brand name and product number
2. Complete manufacturer's recommendation for usage
3. A copy of Level 1 product test report for the submitted admixture from the National Transportation Product Evaluation Program (NTPEP). The test result reported will be evaluated for compliance with appropriate AASHTO specification
4. A current Materials Safety Data Sheet (MSDS)
5. A one-quart (one-liter) representative sample may be required upon request

Specific requirements for each type of admixture are as follows:
A. Air Entraining Admixtures

Air entraining admixtures shall meet the requirements of lowa Department of Transportation Standard Specifications Section 4103 and AASHTO M154.

Approved brands of air entraining admixtures are listed in Appendix A of this IM.
B. Retarding, and Water-Reducing \& Retarding Admixtures for Bridge Deck and Drilled Shaft Concrete Required Extended Working Time

Retarding, and water-reducing \& retarding admixtures shall meet the requirements of AASHTO M194, Type B or Type D. These admixtures can be used for water reduction, retardation, or water reduction and retardation for bridge deck and drilled shaft concrete when extended working time is required.

Approved brands of retarding, and water-reducing \& retarding admixtures for bridge deck and drilled shaft concrete required extended working time are listed in Appendix B of this IM. Appendix B also contains a guideline for dosage rates and working time limits based on an estimated maximum temperature of the concrete during placement at the point of discharge. Working time limits have been determined by AASHTO T197 using 200 psi (1.38 MPa) penetration resistance and shall be provided by manufacturer. In addition to the AASHTO M194 requirements, a minimum working time of 4.5 hours is required for the Type I/II cement mix used the maximum normal recommended dosage of an admixture and tested at the normal temperature (between \(70^{\circ} \mathrm{F}\) and \(75^{\circ} \mathrm{F}\) ).
C. Water-Reducing Admixtures

Water-reducing admixtures shall meet the requirements of AASHTO M194, Type A.
Approved brands of water-reducing admixtures with their proper dosage rates are listed in Appendix C of this IM.

Mid-range water reducers used for bridge overlay concrete (Class HPC-O Mixture) are noted in Appendix C. In additional to the AASHTO M194 requirements, the use of these admixtures shall provide a maximum water content of \(90 \%\) of the control at a normal dosage, and shall not result in a less initial set time as compared to the control The intent of these mid-range water reducers is to achieve a workable, dense, low water to cementitious material ratio concrete for bridge overlay as described in Article 2413.02 of Standard Specifications.

A combination of a water-reducing admixture and a retarding admixture may be used to aid in air entrainment and slump retention.
D. High Range Water-Reducing Admixtures

High Range water-reducing admixtures shall meet the requirements of AASHTO M194, Type F.
Approved brands of high range water-reducing admixtures with their recommended dosage rates are listed in Appendix D of this IM. As indicated, some of these high range water reducers listed can be used to cast self-consolidated concrete. If needed, a viscosity-modified admixture produced by the same manufacturer is allowed to cast self-consolidated concrete.
E. Non-Chloride Accelerating Admixtures

Non-Chloride Accelerating Admixtures shall meet the requirements of AASHTO M194, Type C or E. Total chloride content, which may come from some indirect sources, shall not exceed \(0.1 \%\) in the admixtures.

Approved brands of non-Chloride accelerating admixtures with their recommended dosage rates are listed in Appendix E of this IM.
F. Admixtures for Prestressed \& Precast Concrete

In addition to the admixtures listed in other Appendixes of this IM, the admixtures listed in Appendix F can also be used in prestressed and precast concrete. Benefits of those admixtures in Appendix \(F\) include increasing production rate, improvement of visual appeal, greater strength, more durable, better compactability, and extension of life of molds and machines parts for dry-cast concrete. In order to get an admixture approval, its producer shall prove that the use of the admixture will not reduce strength of concrete, and provide evidence of the above-mentioned benefits.
G. Retarding, Water-Reducing \& Retarding Admixtures for Concrete with Normal Working Times

Retarding, water-reducing and retarding admixtures shall meet the requirements of AASHTO M194, Type B or Type D. These admixtures can be used for water reduction, retardation, or water reduction and retardation for concrete.

When use as a retarder is specified or authorized by the engineer, the contractor shall be responsible for its use and application of the proper dosage rate. It may also be necessary to adjust the quantity of air entraining agent. When fly ash is used in the concrete, the dosage rate shall be applied to both the cement and fly ash combined.

Approved brands of water-reducing and retarding admixtures with their recommended dosage rates are listed in Appendix \(G\) of this IM.

A hydration stabilizer/controller will be evaluated for approval as a retarder (Type B) or a water reducing \& retarding admixture (Type D), and listed and identified in Appendix B or Appendix G after approved.

If alternative requirements specified in AASHTO M194 are met, an admixture may be provisionally approved based on six-month test results. Producer shall submit one-year test results for final approval as soon as they become available. The failure or delay in submitting one-year results may lead to revoking of provisional approval.

Approval of admixtures may be withdrawn because of deficient test results; product changes made after original approval, or unsatisfactory field performance.

\section*{AGITATION OF ADMIXTURES}

Air entraining admixtures shall be stirred, agitated, or circulated at least weekly to ensure a uniform and homogeneous mixture of solids and solution. It is the admixture supplier's responsibility to the contractor to provide a quality product. Therefore the admixture suppliers shall be responsible for the system used to maintain the quality product described above.

Retarding, water-reducing, and high range water-reducing admixtures shall be stirred, circulated, or agitated thoroughly once a day prior to operation of the proportioning plant to maintain the solids in suspension. The agitating shall be done in such a way that the solution in the holding or storage tank is circulated for a minimum of five minutes each day per 100 gallons ( 380 liters) of solution or any fraction thereof. Use of a timer on the pump is recommended to prevent excessive heat from the pump. 5 minutes is adequate for smaller tanks to a maximum of 15 minutes for larger tanks.

A circulating pump with a 250 -watt ( \(1 / 3 \mathrm{hp}\) ) pump motor and a 1 -inch \((25 \mathrm{~mm}\) ) inside diameter hose will be considered as a minimum requirement. The engineer shall approve the method of agitation. NOTE: Introducing air into a tank will not be acceptable.

\section*{CERTIFICATION}
A. FOR MANUFACTURER

At the beginning of each calendar year, a certification form will be sent to each manufacturer. If the admixture to be supplied during that year is identical with the formulation previously tested and approved, then the manufacturer shall complete the quality control limits to be followed and return it to the Office of Materials in Ames, lowa.

\section*{B. FOR DISTRIBUTOR}

At the beginning of each calendar year, a certification form will be sent to each distributor. The distributor shall certify that admixtures to be supplied are not altered and will be distributed as received from the manufacturer.

\section*{MONITOR SAMPLING \& TESTING, AND REJECTION OF MATERIAL}

Monitor samples will be obtained and sent to Central Materials for testing. Sampling frequency shall be according to IM 204. The sample size shall be one 1 pint ( 0.5 liter).

For all admixtures, only one acceptance sample per lot/batch is necessary. No project assurance samples are needed.

Samples will be tested for variation from the manufacturer target for solids, specific gravity and chloride content if needed.

If the test result of a monitor sample is outside the quality control limits specified by AASHTO M154 or M194 and provided by the manufacturer, all material in the storage tank shall be rejected. The admixture company is not allowed to mix new replacement material with the non-compliance material. The admixture manufacturer is responsible for the condition of storage tanks and should determine if the tanks should be cleaned to prevent cross contamination and further product failures.
I.M. 405

White Pigmented
Curing Compound

Iowa Department of Transportation
Office of Materials

\section*{WHITE PIGMENTED CURING COMPOUND IN BULK STORAGE}

\section*{GENERAL}

White pigmented curing compound in bulk storage shall meet the requirements of Section 4105. The material shall be stored in clean bulk containers. The containers shall be capable of keeping the material well-mixed without damaging the emulsified curing compound. Diaphragm pumps and mechanical agitators are examples of acceptable means of mixing; gear pumps and other high shear devices are unacceptable.

Each day the curing compound is used, the bulk tank of material shall be well mixed prior to application as described below. The material does not need to be mixed on days it is not used. The bulk tank shall not go longer than 4 days without mixing.

The batch number shall be clearly marked on the bulk tank at all times. Different batches of cure may be mixed in the same bulk tank provided both batches of cure are acceptable. Cure from two different manufacturers shall not be mixed in the same bulk tank.

Documentation in the form of an invoice or identification list from the supplier shall be furnished to the project engineer at the time of delivery to the project. This identification list shall contain the project number, county, contractor, brand, batch number of curing compound, Ames Lab Number representing the batch test result and the date delivered to the project.

Acceptance of material will be based on successful completion of tests prior to shipment. Random monitor samples may be taken at any time. It is recommended that the project inspector obtain a monitor sample every two months the material remains on a job site without being used up.

\section*{PRE-SHIPMENT SAMPLING}

Prior to shipment, an lowa DOT employee, or designated representative shall witness the sampling of each batch of cure to be supplied to lowa DOT projects. The mixing and sampling techniques shall be according to manufacturer recommendations. A one-quart (one-liter) sample shall be obtained and sent to the Central Materials Laboratory. Acceptance of the batch will be based on satisfactory test results.

\section*{MONITOR SAMPLING}

A monitor sample may be obtained at any time. Prior to sampling, the bulk tank shall be well mixed. For tanks with mechanical agitating paddles, the material shall be mixed for 15 minutes, but not more than 30 minutes. This is true regardless of the amount of material in the tank.

For tanks with circulating pumps, the material shall be drawn from the bottom of the tank and pumped to the top at a point furthest from where the material is drawn. The material shall be pumped for such a time that the material in the tank is turned over once but not more than two times.

For example: If a 5000 -gallon (20,000-liter) tank is full and has a pump rated at 200 gallons (800 liters) per minute, it would take 25 minutes to turn the tank over once. 5000 gallons \(\div 200\) gallons ( 20,000 liters \(\div 800\) liters) per minute \(=25\) minutes. Therefore the tank should be mixed at least 25 minutes, but no longer than 50 minutes. If the tank was nearly empty with only 1000 gallons ( 4000 liters) of material, the tank should be mixed between 5 and 10 minutes. 1000 gallons \(\div 200\) gallons per minute \(=5\) minutes or 4000 liters \(\div 800\) liters per minute \(=5\) minutes.

Samples should be taken from the discharge hose on the bulk tank. At least 5 gallons ( 20 liters) of material should flow through the hoses to ensure that freshly mixed material is being sampled. A one-quart (one-liter) sample should be obtained and sent to the Central Materials Laboratory. Noncompliant test results on any monitor sample shall be sufficient cause for rejection of a batch.
I.M. 491.17

Fly Ash

\section*{FLY ASH}

\section*{GENERAL}

Acceptance of fly ash will be on the basis of approved sources and upon satisfactory test results on samples obtained at the project site. Test results of fly ash shall meet the requirements of AASHTO M 295 and the Specifications of the lowa Department of Transportation. Approval will require identification of the specific sources of the coal from which the ash is derived.

Approval is based upon fly ash produced when the power plant is utilizing specific materials, equipment, and processes. Any change in materials, equipment, and processes will void any source approval and require that a new approval be sought. Approved fly ash sources are listed in the Materials Approved Products Listing Enterprise (MAPLE) as Appendixes A and B for two types of applications.

Fly ash produced immediately prior to shut down and after start up may be quite different from the fly ash normally obtained. The fly ash can be affected to the point that it does not meet specifications. Monitor samples or verification samples tested by the lowa Department of Transportation not meeting specifications will void the source approval.

\section*{SOURCE APPROVAL}
A. Certified Source

Approved certified sources of fly ash are listed in Appendix A of this IM. A source may furnish fly ash on the basis of certification provided:
1. The quality-monitoring program meets the minimum sampling and testing frequencies established in ASTM C 311. The tonnage units expressed therein are interpreted to refer to as-marketed material. The producer shall test at least one sample for each consecutive 30 days, for the months of March through October for conformance to lowa Department of Transportation specifications. The test reports for all monitor samples shall be submitted to the lowa Department of Transportation within 45 days of the sampling date.

In addition to the test frequencies established in ASTM C 311, daily control tests shall be made to establish the uniformity of the fly ash being produced. Specific tests shall be agreed to by the engineer and may vary from source to source. As a minimum, the loss on ignition and percent retained on the No. 325 mesh sieve shall be determined.

Sample test records and shipment reports shall be available for inspection by lowa Department of Transportation personnel for at least three years after the fly ash has been tested.

The Quality Control Laboratory will be considered approved if it is properly equipped and staffed to perform the tests required for an accepted Quality Control Program. Continued approval of the control laboratory will depend on the comparison of its test results with the lowa Department of Transportation Central Laboratory. If major differences are found, an attempt to resolve them shall be made as quickly as possible. Continued unresolved differences in test results will be considered a basis for discontinuing control laboratory approval.
2. The fly ash has shown conformance to the applicable specifications for a continuous period of at least the last six months.
3. Available alkali in approval sources of fly ashes shall be less than \(1.50 \%\). The value of available alkali in fly ash can be either determined by the test method specified in ASTM C 311, or by the statistical formula developed by the Central Materials Laboratory based on the historical data. Fly ash sources that have available alkali between \(1.50 \%\) and \(2.50 \%\) will be approved based on satisfactory results of the following test. Mortar bars made per ASTM C 311 with \(15 \%\) and \(30 \%\) fly ash, Type I cement with \(0.70 \%\) to \(0.80 \%\) of alkali ( \(\mathrm{Na}_{2} \mathrm{O}\) ) equivalent (two cements may be mingled to achieve this alkali range), and Pyrex aggregate shall exhibit no more than 10\% expansion over non-fly ash mortar bars at an age of 60 days. Testing shall be performed by a laboratory approved by the lowa Department of Transportation.
4. Each shipment of fly ash is properly certified.

The supplier of certified fly ash shall furnish for the project records two invoices or bill of lading copies that bear the following certification statement and the signature of a responsible company representative:

Certification Statement
The material herein described has been sampled and tested as prescribed by the Highway Division of the lowa Department of Transportation and complies with the applicable specification requirements for Class \(\qquad\) fly ash.

Date \(\qquad\) Signed

The bills of lading or invoices shall include project number, if available, source name, source location, source code, class, and quantity in the shipment.

These copies of the bill of lading or invoice shall accompany each load, and shall be retained at the project or ready mix plant for the Project Engineer records.

The truck tanker shall have a copy of the invoice or bill of lading attached directly to the tanker portion of the truck. When the tanker unloads the contents at the project site, the unloading time and material final destination (storage "pig" number) shall be marked on this copy and left with the invoice or bill of lading copies.

In the case of more than one project being supplied by a ready mix plant, the plant shall furnish the Project Engineer, for each project, either a copy of each bill of lading or invoice, or a listing of the bills of lading or invoices representing the fly ash incorporated in the project. This listing shall bear the signature of a responsible supplier representative.

The source, car or truck number, ticket number, ash type, and quantity of each shipment of fly ash used on a project shall be recorded on Form \#830211, or Form \#830224, whichever is applicable.
5. At least one monitor sample shall be secured annually from power plant sites, located in lowa or within 50 miles from lowa borders, and be tested by the lowa Department of Transportation. The test results of monitor samples shall be in compliance with current specifications.
6. Co-Mingling of Fly Ash

Mixing of fly ash from different sources, different generating plants/units, or different classes into one storage bin or silo will not be allowed, with the following exception.

When the same coal stockpile, the same brand and model of generating equipment, the same process of operation, and the same brand and model of fly ash collection-equipment are used; fly ashes from different units at a generating plant may be considered for approval as a single blend and stored in a silo. To apply for the approval, the producer or marketer shall provide the composite sample test data (composite samples should represent 3200 ton increments of fly ash collection or the month whichever comes first) from the separate units for the previous 12 months. The Office of Materials will conduct a statistical t-test to compare major physical and chemical properties of the two fly ash sources. If the t-test results show the test data means to be equal at a significance level of 0.05 , the blending process may be allowed. Annual analysis may be required for continued approval. Blending will only be allowed within the storage silo.

At ready mixed concrete plants and paving batch plants, a fly ash storage bin shall be emptied, as far as practical, prior to refilling from a different source.
B. Sources for Pavement Subsealing and Jacking
1. Fly ash to be used for pavement subsealing and jacking may be accepted on an approved source basis as listed in Appendix B.
2. A mixture of 3 parts fly ash and 1 part Portland cement shall have an initial setting time between 30 minutes and 3.0 hours. Initial set is defined as 100-psi resistance when measured in accordance with ASTM C 403.

\section*{PROJECT ASSURANCE SAMPLING}

Required verification samples will be secured at the project site just before incorporation into the work. Test results, which do not comply with the specifications, may be considered sufficient cause to rescind approval to furnish fly ash on certification basis. Construction, which contains fly ash represented by verification samples, which show deficient test results, will be subject to the requirements of Article 1105.04 of the Standard Specifications.

Depending upon certain chemical characteristics, fly ash is marketed as either Class F or Class C ash per AASHTO M 295. The identification submitted with the verification samples sent to the Central Laboratory should include the normal descriptive information as well as the source of the ash, the marketer and the class of the ash.

Precautionary measures shall be taken to prevent cement contamination of fly ash samples obtained at the proportioning plants. The samples shall be taken preferably as follows:
1. Directly from the delivery transport vehicles
2. Drop a sufficient amount of material in a clean container or a clean end loader bucket, and obtain a representative sample.

\section*{UNIFORMITY CHECK AND DENSITY UPDATE}

For checking the AASHTO M 295 uniformity requirement, the average fly ash density for a source will be computed based on the values tested and reported by the Central Materials Laboratory. The value of average density will be updated if it is more than \(0.10 \mathrm{gram} / \mathrm{cm}^{3}\) different than the current value listed in the Appendix A. The density update will generally be done in the October IM revision unless a change in fly ash operation or coal source occurs.

\section*{I.M. 451}

Steel Reinforcement

\title{
STEEL REINFORCEMENT ***GENERAL REWRITE - PLEASE READ CAREFULLY.***
}

\section*{GENERAL}

This IM covers steel reinforcement. The requirements for steel reinforcement can be found in standard specification 4151. Refer to IM 451.03B for epoxy coated steel reinforcement. Refer to IM 451.02 for galvanized steel reinforcement. Refer to IM 452 for stainless steel reinforcement. Approved suppliers and manufacturers can be found in the Materials Approved Products Listing Enterprise (MAPLE).

\section*{MANUFACTURING MILL APPROVAL}

Prior to furnishing reinforcing steel or wire mesh reinforcement on a certification basis, the following documents shall be submitted:
1. A request shall be submitted to Central Construction and Materials Office in Ames, Iowa detailing the location of the manufacturing plant and any distribution center(s).
2. Quality control plan/procedures the company has established to ensure material quality and identity through the manufacturing process as well as quality control testing. Submit NTPEP approval for review and acceptance if available. IM 451 Appendix G provides guidelines for the Fabricator/Supplier Quality Control Procedures.
3. A typical example of certification documents the mill will furnish.
4. A picture showing the permanent mill-imprinted markings/symbols of the manufacturing mill (grade Mark, Bar Size, etc...)
5. Copy of an identification list, invoice or bill of materials. The documents shall show the project and design number, the size, length, grade, heat number, number and weight of pieces in the shipment. The document must have a certification statement as described in the Certification Procedures.
6. Submit three 6 foot sample bars for testing representing the range of small, medium, and large diameter bars rolled by the producing mill.

Upon satisfactory review of this application, the manufacturing mill will be placed on the approved list in Appendix D.

\section*{SUPPLIER APPROVAL}

Prior to furnishing reinforcing steel or wire mesh reinforcement on a certification basis, the supplier shall request approval by submitting the following items:
1. A request shall be submitted to the Central Construction and Materials Office in Ames, Iowa.
2. Sources of steel that would be handled by the company and supplied.
3. Quality control procedures the company has established to ensure material identity (as to heat numbers and inventory) from the time material arrives from a mill or a source, through
fabrication process, and shipment. Refer to IM 451 Appendix G.
4. Copy of an identification list, invoice or bill of materials. The documents shall show the project and design number, the size, length, grade, heat number, number and weight of pieces in the shipment. For wire mesh reinforcement, also include the spacing and size of wire, length and width of sheets or rolls and quantity in the shipment. The document must have a certification statement as described in the Certification Procedures.

Upon satisfactory review of this application the company will be placed on the approved list in Appendix B, C or E.

\section*{CERTIFICATION PROCEDURES}
- The steel mill and/or supplier shall furnish an identification list, invoice or bill of loading for each shipment to each project. It shall show the project, design number, size, length, grade, heat number, source and number and weight of pieces in the shipment and contain a certification statement state that the attached mill test reports represent the itemized material. For wire mesh reinforcement, also include the spacing and size of wire, length and width of sheets or rolls and quantity in the shipment.
- The signed mill test reports/certification shall include the physical, chemical analysis, ASTM designation, grade and type for each heat.
- The signed mill test reports/certification shall also include a statement indicating the steel meets the requirements of IM 107, Group 1, Buy America.

\section*{ACCEPTANCE}

Acceptance of steel reinforcement and wire mesh shall be on the basis of certification from an approved steel manufacturer and/or supplier and acceptable verification test results when required.

Reinforcing steel, which is shipped to a contractor for use on several projects, shall be sampled at the rate established under verification sampling and testing.
Examples of this would be shipments to prestressed/precast and concrete pipe plants or lighting and signing contractors where the steel may be used on several projects.
- Approved suppliers are listed in Appendix B.
- Approved suppliers of wire mesh reinforcement are listed in Appendix C.
- Approved manufacturers of reinforcing steel (plain and deformed bars) are listed in Appendix D.
- Approved suppliers of reinforcing steel mechanical splicing products are listed in Appendix E.

The amount of verification sampling and testing will generally depend upon the amount of steel required for the project.
1. Project Quantity Less Than 45 tons

Acceptance will be based on certification of each heat with no verification samples required.

\section*{2. Project Quantity 45 tons and over \\ Sample one 6 foot piece of the most common bar furnished to the project.}
3. Wire mesh reinforcement

The District Materials Engineer shall secure a 24 -inch \(\times 24\)-inch sample at a minimum frequency of one sample per source per year.

\section*{APPROVED SUPPLIERS OF MECHANICAL SPLICES FOR REINFORCING BARS ***GENERAL REWRITE - PLEASE READ CAREFULLY.}

\section*{GENERAL}

This IM covers mechanical splices. The requirements for mechanical splices can be found in standard specification 4151. Approved suppliers of mechanical splices for reinforcing bars can be found in the Materials Approved Products Listing Enterprise (MAPLE).

\section*{FABRICATOR/SUPPLIER APPROVAL}

Prior to furnishing mechanical splices to a project the supplier or fabricator shall request approval by submitting the following items:
1. A written application for approval shall be submitted to the Office of Construction and Materials in Ames, lowa, and shall contain the following items.
a. Source of steel
b. Grade of steel
c. Grade of couplers
d. Name of fabricator
e. Epoxy powder brand name and coater's name, if applicable
2. Quality control procedures that the company has established to ensure material identity (heat number, source, etc.)
3. A typical example of certification documents that the company will furnish to lowa DOT projects.
4. Test reports from independent / certified lab showing test compliance with the intended requirements.
5. Submit three different samples of three different sizes for testing (coated and uncoated)

\section*{CERTIFICATION PROCEDURES}
- The steel mill, fabricator or supplier shall furnish a letter of compliance with a certification statement indicating the couplers meet the ASTM and lowa DOT specification requirements. The letter shall indicate the project number, county and contractor's name.
- If epoxy coated couplers are used, the certification statement shall also include the name of the epoxy coating company and powder brand.
- The steel mill, fabricator or supplier shall furnish an identification list, invoice or bill of loading for each shipment to each project. It shall show the project and quantity of couplers shipped to the project.
- The signed mill test reports used in the fabrication of the couplers shall include the chemical and mechanical properties, ASTM designation, grade and type for each heat.
- The signed mill test reports/certification shall also include a statement indicating that the steel meets the requirements of IM 107, Group 1, Buy America.

\section*{ACCEPTANCE}

Acceptance of mechanical splices shall be on the basis of certification from an approved source and certification as described above.

STEEL REINFORCEMENT
APPROVED SUPPLIERS / DISTRIBUTORS WAREHOUSE MONITOR INSPECTION FORM

Supplier / Distributor Name
Location
Contact Person
Steel Sources
(must be on the approved list IM 451 and Appendices)
Current / up-to-date written Q.C. Procedures in place

Date of last in-house review / update
Material stored above ground on proper cribbing or timber
Heat number on tags are clearly legible \(\qquad\)
Bar lengths properly supported to prevent sagging
Bar reinforcements are from domestic origin
(foreign steel is not acceptable)
Steel reinforcement compliance?
Records keeping - Certified Mill Test Reports \(\qquad\)
Storage (indoor / outdoor)
Special areas designated for state certified steel reinforcement \(\qquad\)
cc: Central Construction \& Materials Office

\section*{****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.}

\section*{GUIDELINES FOR FABRICATOR/SUPPLIER QUALITY CONTROL PROCEDURES}
1. List Sources - source must be on the approved list (IM 451 and applicable appendices).
2. Responsibility \& Authority - Quality Control Manager and/or responsible person
a. Qualifications
b. Responsibilities
3. Material Identification and Handling
a. Incoming steel identified by source and heat number
b. Mill Test reports
c. Identity of steel is maintained through fabrication/storage.
d. After fabrication, length and number of pieces identified with heat number
e. One heat number per bundle
4. Welding \& welding Requirements (if applicable):
a. Weld Specification Requirements (AWS D1.1, D1.2, D1.4, D1.5, etc...)
b. Weld Procedure Specifications (WPS), submittal \& approval .
c. Welder's certification / qualifications.
5. Documentation/Record Keeping
a. All projects are kept and/or assigned a file number in which all mill test reports for any steel will have a certification on file.
b. Fabrication/shear logs are complete. Material fabricated can be traced to source, heat number, grade, etc.
c. Certification documents contain a certification statement that all steel is melted in the USA and of domestic origin.
d. Material Certification documents are submitted to the respective District Materials Engineer.
6. Storage :
a. Proper Storage ( Indoors / Outdoors).
b. Off the grounds (elevated/on pallets , etc..)
c. Stocked pile materials (steel) are bundled , properly marked \& properly Identified (Source , Heat Number ,Grade , Etc...)
7. Shipping \& Handling
a. All steel is marked and identified with project number and any other markings. One heat number per bundle
b. Each shipment has an identification list showing project, size, length, grade, heat number, number and weight of pieces in the shipment, and attached mill certifications
****THIS IS A NEW APPENDIX. - PLEASE READ CAREFULLY.**** STEEL REINFORCING IDENTIFICATION REPORT

\section*{Distributer / Suppliers}

Must be listed in Appendix B, IM 451

\section*{Rolling Mills}

Must be listed in Appendix D, IM 451

\section*{Epoxy Coater}

Must be listed in Appendix A, IM 451.03B
Project Number

\section*{Design Number}

\section*{Contractor's Name}

\section*{Sub-Contractor's Name}

Certified Mill Test Report: Attach a copy of the Certified Mill Test Report for each Heat No. listed below

\section*{Epoxy Coating Certification:}

In addition, for coated bar, attach a copy of the Epoxy Powder Certificate and Epoxy Coating Test Certificates for each Lot. No.
Sheet Piling Size
Length
Heat No.
No. of Pieces

Project Inspector
Date~~~~~


[^0]:    Gene Welter

[^1]:    Shane Garitty: Dubuque, Jones, Buchanan, Delaware, Jackson Mary Godwin/ Mardel Huebner: Scott, Cedar, Clinton Kirby Salisbury: Linn, Benton, Iowa Jay Schrock: Johnson, lowa

[^2]:    Note 1- The DME may use different approaches for DOT, local agency, and contractor personnel.

[^3]:    Subdr
    Subdrain Pipe, PE
    Subdrain Pipe (concrete or clay) Subdrain Pipe (CMP perforated) Subdrain Pipe Outlet- CMP Subdrain pipe Outlet- PE Rodent Guard

    Concrete Culvert Pipe
    Corrugated Metal Culvert Pipe Corrugated Plastic Culvert Pipe Pre-Cast Box Culvert Aprons Apron Guards

    Pipe for Sanitary Sewer
     Intakes

    Utility Access
    Fabric Erosion Control
    Seeding
    Fertilizer Mulch Nursery Silt Fence Fencing Gates

[^4]:    *A project approach may be applied at the discretion of the DME at the frequency $1 /$ project.
    NOTE: RCE/CONTR indicates that the Contractor shall assist in the sampling at the direction of and witnessed by the Project Engineer.

[^5]:    * A system approach may be applied at the discretion of the DME.

    NOTE: A Verification sample for asphalt binder quality and aggregate quality not required under 2000 tons of mix.

[^6]:    1) See IM 504 for Day 1 moisture correction factor.
    (2) The sample from the first day and $1 /$ week shall be forwarded to the District Laboratory for testing. The other samples shall be retained for submission in the event of a failing test result. (3) No more than 3 calendar days between consecutive tests. Adjustments may be approved by the Engineer for inclement weather or conditions,
[^7]:    
    DME-District Materials Enginee
    CTRL-Central Materials Office
    V-Verification
     (2) For Class O on daily pours of more than 300 square yards, the minimum frequency will be 1 test per 100 square yard
    

[^8]:    Emulsion samples in plastic bottles only.
    No samples required for joint repair, crack filling, and fog seal. Acceptance based on certification only. (1) Sample emulsion for full width placement seal coat, slurry, and microsurfacing only
    (2) Log all shipments

