8. Iowa Department of Transportation

ROTATIONAL-CAPACITY TEST
Long Bolt Procedure 1-5-95
(For bolts long enough to be tested in a Skidmore.)
County \qquad Project \#
\qquad

Skidmore Correction	
Calb. Ave \quad kip Calb. Ave - Gauge $=$ Gauge____kip	

Fastener Type BLACK GALVANIZED Field Relubricated for this test Yes \qquad No \qquad

Production Lot\# NOTE s :
Bolts
Nuts
Washers
R-C Lot \# \qquad

R - C Procedure from I.M. 453.06 B, Appendix A

1. Place fastener in Skidmore, use washer under "turned" element

Need a minimum 3 to 5 exposed treads behind the nut. (NOTE: May use a maximum of 3 washers \&/or or shim plates.)
2. Initially tension fastener to values in TABLE 1.
3. Match mark bolt tip, nut corner, washer/shims, and the Skidmore's base plate. (Mark shall be a straight-line.
4. Tighten fastener to at least MINIMUM specified tension in TABLE 2. (Include any Skidmore correction factors.) This tension is required for a calculation in step 6 and is called " P " in the formula below. Check total rotation for step 4. Should be about the same as rotation for Turn-of-Nut.
5. Record torque required to develop tension in step 4. (Torque is read with nut in motion.)
6. Torque in step 5 must be less than "Maximum" torque.
"Maximum" torque is calculated by $T=0.25 \times$ bolt dia/ $12 \times \mathrm{P}$. If step 5 's torque is less than Maximum, bolt and nut pass. If not, lot fails and entire lot may be relubricated and retested or else replaced. 7. Complete nut rotation as required by $\mathrm{R}-\mathrm{C}$ Rotation listed in TABLE 4.
8. Record tension at the end of step 7's added rotation. (Accounting for any Skidmore correction factors.) Step 8's tension must be greater than MINIMUM shown in TABLE 3. If it is greater, fastener passes. If not, fastener lot fails. If lot fails due to tension being less than minimum shown in TABLE 3, the entire bolt lot may be relubricated and tested again. If bolt breaks during step 7, entire bolt lot fails and shall be replaced.
9. Loosen nut, remove bolt, and inspect bolt and nut for visible signs of damage.

Damage could be thread stripping, nut does not run freely to location of test shims, nut is cracked, bolt is cracked in the threads, etc. If there is evidence of damage, the bolt lot is rejected \& shall be replaced. 10. Conduct test on two randomly selected fasteners. Both tested fasteners must pass the R-C test to accept that lot.

Test Number \qquad
Date \qquad
Inspector \qquad
Design \# \qquad
Calculations
Bolt diameter *D* $=$ in. $8 \mathrm{D}=$ \qquad ches
\qquad D= in.

Misc. Information

TABLE 1

Bolt Dia.	Initial Tension Range
$3 / 4^{\prime \prime}$	3 to 5 kips
$7 / 8^{\prime \prime}$	4 to 6 kips
$1 "$	5 to 7 kips
$1-1 / 8^{\prime \prime}$	6 to 8 kins

TABLE 2

Bolt Dia.	Specification Min. Tension
$3 / 4^{\prime \prime}$	28.4 kip
$7 / 8^{\prime \prime}$	39.3 kip
$1 "$	51.5 kip
$1-1 / 8^{\prime \prime}$	56.5 kip

TABLE 3

Bolt Dia.	Min. Adj. Tension
$3 / 4^{\prime \prime}$	32.7 kip
$7 / 8^{\prime \prime}$	45.2 kip
$1^{\prime \prime}$	59.2 kip
$1-1 / 8^{\prime \prime}$	65.0 kin

TABLE 4

Bolt Length	$R-C$ Test Total Rotation
$L \leq 4 D$	$2 / 3$
$4 D<L \leq 8 D$	1
$8 D<L \leq 12 D$	$1-1 / 3$

Bolt Diameters Fraction	
Decimal	
$3 / 4 "$	$0.750 "$
$7 / 8^{\prime \prime}$	0.875
$1-1 / 8^{\prime \prime}$	$1.125 "$

ASTM GRADES FOR	
BIk \& Galv	Bolt A 325
Black	Nut A 194
Galvanized	Nut A 563
Blk \& Galv	Washer F 436

