THESE BRIDGES MAY BE BUILT ON A 0°,15°,30° OR 45° SKEW. THESE PLANS SHOW THE BRIDGES SKEWED IN ONE DIRECTION, BUT ALL DIMENSIONS AND DETAILS WOULD BE THE SAME FOR THE

THESE STANDARDS GIVE MOST OF THE INFORMATION NECESSARY TO BUILD THESE BRIDGES. HOWEVER, THE FOLLOWING ADDITIONAL INFORMATION IS REQUIRED FOR USE ON PRIMARY ROUTES. FOR SECONDARY ROUTES THE ENGINEER MAY NOT REQUIRE ALL SHEETS TO BE PROVIDED:

- I. TITLE SHEET WITH ENGINEERS SEAL
 2. ESTIMATED QUANTITIES TOTALS INCLUDING CLASS 20 EXCAVATION FOR BRIDGE
- 3. SITUATION PLAN LAYOUT OF BRIDGE
- 4. TOP OF SLAB ELEVATIONS LAYOUT
- 5. BOTTOM OF ABUTMENT FOOTING ELEVATIONS
- 6. BOTTOM OF PIER CAP ELEVATIONS
 7. PILING DESIGN INFORMATION
- 8. SLOPE PROTECTION LAYOUT IF NEEDED
- 9. CONDILLT LAYOUT
- IO. LIGHTING LAYOUT IF NEEDED

FOR CLARITY, MOST SECTIONS SHOWN ON THE FOLLOWING SHEETS ARE DRAWN WITH BARRIER RAIL ONLY. THESE SECTIONS WILL BE IDENTICAL FOR OPEN RAIL DESIGN WITH ANY MODIFICATIONS SHOWN ON SHEET J30-43-06 AND J30-44-06.

THESE BRIDGES ARE DESIGNED FOR HL93 LOADING PLUS 20 LBS. PER SQ. FT. OF ROADWAY FOR FUTURE WEARING SURFACE. CONTROL OF CRACKING BY DISTRIBUTION OF REINFORCEMENT FOR SLAB DESIGN BASED ON PRE LRED 2005 INTERIMS.

NOTE THAT WHEN APPROACH PAVEMENT IS TO BE PLACED, THE TEMPORARY PAVING BLOCKS SHALL BE REMOVED AND A PROPER JOINT FOR EXPANSION SHALL BE PROVIDED BETWEEN THE BRIDGE AND THE APPROACH PAVING.

THE FLOOR SLAB AS SHOWN INCLUDES &" INTEGRAL WEARING SURFACE.

THE ABUTMENTS FOR THESE BRIDGES ARE BUILT INTEGRAL WITH THE SUPERSTRUCTURE, THEREFORE, IT IS IMPORTANT THAT A PROPER JOINT FOR EXPANSION BE PROVIDED BETWEEN THE BRIDGE AND APPROACH PAVING, WHEN APPROACH PAVING IS NEEDED.

THE ABUTMENT DESIGN UTILIZED ON THESE BRIDGES RESTRICTS THEIR USE IN THE FOLLOWING MANNER:

- . THESE BRIDGES ARE NOT TO BE USED WHEN POINT BEARING FOR THE ABUTMENT STEEL PILING WOULD BE OBTAINED ON ROCK AT A DISTANCE LESS THAN 15 FEET FROM THE
- FOR THE 140 FOOT AND 150 FOOT LONG BRIDGES THE ABUTMENT PILING ARE TO BE DRIVEN THROUGH OVERSIZED HOLES PREBORED TO A MINIMUM OF 10 FEET BELOW THE BELOW THE BOTTOM OF FOOTING. THE PREBORED HOLES SHALL BE IN ACCORDANCE WITH SECTION 2501.03, Q OF THE STANDARD SPECIFICATIONS. THE ELEVATION OF THE BOTTOM OF THE PREBORED HOLE SHALL BE SHOWN ON THE PLANS.

 IF ROCK IS ENCOUNTERED LESS THAN 5 FOOT BELOW THE PREBORED HOLES, A SPECIAL
- ANALYSIS WILL BE REQUIRED. WHEN PREBORING IS NOT REQUIRED FOR THE ABUTMENT FOOTING AND ROCK IS ENCOUNTERED LESS THAN 10 FOOT BELOW THE BOTTOM OF ABUTMENT FOOTING, A SPECIAL ANALYSIS WILL BE REQUIRED.

THE PIERS AND ABUTMENTS FOR THESE STANDARDS HAVE BEEN DESIGNED FOR THE USE OF BOTH FRICTION AND POINT BEARING PILES. IT IS NECESSARY THAT THE TYPE AND LENGTH FOR BOTH THE ABUTMENT AND PIER PILES BE DESIGNATED ON THE FRONT SHEET OF THE PLANS.

THE INTEGRAL ABUTMENTS AND PILE BENTS FOR THESE J30 STANDARDS HAVE BEEN DESIGNED FOR THE USE OF VARIOUS TYPES OF PILE FOOTINGS AS FOLLOWS.

- INTEGRAL ABUTMENTS: TIMBER PILES OR HPIOX42 PILES AT BRIDGE DESIGN MANUAL(BDM) ARTICLE 6.2.6.1 STRUCTURAL RESISTANCE LEVEL-I (SRL-I)
- PILE BENTS: STANDARD CONCRETE-FILLED STEEL PIPE PILES (PIOL), STANDARD PRESTRESSED CONCRETE PILES (PIOL), OR STANDARD H-PILES (PIOL AND SRL-I)

BECAUSE THESE BRIDGE STANDARDS HAVE BEEN REVISED FOR LRFD BASED ON 2012-COMPLETED IOWA STATE UNIVERSITY RESEARCH, FOR PILE FOUNDATIONS THE DESIGNER WILL NEED TO DETERMINE THE CONSTRUCTION CONTROL METHOD, CONTRACT LENGTH, AND DRIVING TARGET AND GIVE THAT INFORMATION ON THE FRONT SHEET OF THE PLANS. BRIDGE DESIGN MANUAL CADD NOTES E177, E718, E719, E818, AND E819 ARE APPROPRIATE FOR THAT PURPOSE. THE NOTES, AS WELL AS THE BRIDGE DESIGN MANUAL AND DESIGN EXAMPLES ARE AVAILABLE ON THE OFFICE OF BRIDGES AND STRUCTURES WEB SITE: HTTP://WWW.IOWADOT.GOV/BRIDGE/INDEX.HTM.

STRUCTURAL RESISTANCE LEVEL-I (SRL-I) REPLACES THE 50 TON STEEL PILE DESIGNATION.

FOR MORE INFORMATION ON SRL-I. SEE THE BRIDGE DESIGN MANUAL, LOCATED ON THE IOWA DEPARTMENT OF TRANSPORTATION, OFFICE OF BRIDGES AND STRUCTURES WEB SITE. THESE STANDARDS CAN BE USED FOR BRIDGES WITH OR WITHOUT EPOXY COATED REINFORCING. REINFORCING BAR LAP LENGTHS ARE BASED ON THE USE OF EPOXY COATED REINFORCING, BUT NEED NOT BE MODIFIED IF NON-COATED BARS ARE TO BE USED. THE DESIGNER SHALL SPECIFY THE APPROPRIATE BID ITEM NO. FOR THE EPOXY COATED OR NON-EPOXY COATED REINFORCING.

IT IS RECOMMENDED THAT THE EPOXY COATED REINFORCING OPTION BE USED IF IT IS ANTICIPATED THAT THE BRIDGE DECK AND/OR THE BRIDGE APPROACHES WILL BE CHEMICALLY TREATED FOR THE

IF EPOXY COATED BARS ARE USED IN THE DECK, THEN ALL BARS USED IN THE ABUTMENT (FOOTING AND BACKWALL), CAP, AND BARRIER RAILS SHALL BE EPOXY COATED.

FOR PIERS SUBJECT TO SCOUR THE DESIGN BEARING SHALL BE OBTAINED BELOW SCOUR ELEVATION.

KEYWAY DIMENSIONS SHOWN ON THE PLANS ARE BASED ON NOMINAL DIMENSIONS UNLESS STATED OTHERWISE. IN ADDITION, THE BEVEL USED ON THE KEYWAY SHALL BE LIMITED TO A MAXIMUM OF IO DEGREES FROM VERTICAL.

THESE BRIDGE PLANS LABEL ALL REINFORCING STEEL WITH ENGLISH NOTATION (Sai IS & INCH DIAMETER BAR). ENGLISH REINFORCING STEEL RECEIVED IN THE FIELD MAY DISPLAY THE FOLLOWING "BAR DESIGNATION". THE "BAR DESIGNATION" IS THE STAMPED IMPRESSION ON THE REINFORCING BARS, AND IS EQUIVALENT TO THE BAR DIAMETER IN MILLIMETERS.

ENGLISH SIZE	3	4	5	6	7	8	9	10	П
BAR DESIGNATION	10	13	16	19	22	25	29	32	36

SPECIFICATIONS:

DESIGN: AASHTO LRFD, SERIES OF 2004 WITH INTERIM 2005,

CONSTRUCTION: IOWA DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS FOR HIGHWAY AND BRIDGE CONSTRUCTION, SERIES 2012, PLUS
APPLICABLE GENERAL SUPPLEMENTAL SPECIFICATIONS, DEVELOPMENTAL SPECIFICATIONS, SUPPLEMENTAL SPECIFICATIONS AND SPECIAL PROVISIONS SHALL APPLY TO CONSTRUCTION WORK ON THIS PROJECT.

DESIGN STRESSES:

DESIGN STRESSES FOR THE FOLLOWING MATERIALS ARE IN ACCORDANCE WITH THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 3rd Ed, SERIES OF 2004. REINFORCING STEEL IN ACCORDANCE WITH LRFD AASHTO SECTION 5, 6RADE 60. CONCRETE IN ACCORDANCE WITH LRFD AASHTO SECTION 5, 4rd = 3,500 FSI, STRUCTURAL STEEL IN ACCORDANCE WITH LRFD AASHTO SECTION 6. ASTM A709 GRADE 36 OR GRADE 50 (AASHTO M270 GRADE 36 OR GRADE 50).

n = 9 FOR TENSION STEEL
2n = 18 FOR COMPRESSION STEEL

HL-93 LIVE LOAD PLUS 20 LBS. PER SQ. FT. FOR FUTURE WEARING SURFACE. END SPAN LENGTH IS USED TO CALCULATE EQUIVALENT WIDTH IN LIVE LOAD DISTRIBUTION.
SIX FOOT OF APPROACH SLAB DEAD & LIVE LOAD INCLUDED IN ABUTMENT LOADS.

CONTROL OF CRACKING BY DISTRIBUTION OF REINFORCEMENT FOR SLAB DESIGN BASED ON PRE 2005 LRFD INTERMS.

A. C. 06-13 ATEST REVISION DATE

lowa Department of Transportation Highway Division

STANDARD DESIGN - 30' ROADWAY, 3 SPAN BRIDGES

CONTINUOUS CONCRETE SLAB BRIDGES NOVEMBER, 2006

GENERAL NOTES

J30-01A-06